Analytics and the ‘Internet of Things’

本文探讨了物联网中不同的分析范例及应用场景,从“存储-后期分析”的常见模型到实时流处理,再到闭环分析的重要性。文章强调了根据特定使用场景选择合适架构的重要性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Analytics has become a major buzzword these days, whether in the realm of connected devices, the Internet of Things, web analytics or big data business analytics. In the context of the Internet of Things, I thought I’d share some observations on different analytics paradigms and use cases.

One common analytics model is what could be termed “store-and-analyze-later,” where massive amounts of data are streamed up to cloud servers and Hadoop clusters for later analysis. The problem with this approach, especially given the ever increasing amounts of data, is that it doesn’t scale, the amount of data quickly overwhelms our ability to make sense of it. Compare that to a model where intelligence (gained from analytics) is tailored to the use case and system topology, leading to “intelligence where and when you need it”-- the notion of multi-tiered intelligence where edge devices have a configurable amount of autonomy and decision making authority, and no longer act as “dumb data generators.”

Clearly the right architecture is largely driven by the use case being addressed, and context matters. Take for example a predictive modeling scenario, where complex machine learning algorithms on powerful servers crunch through huge amounts of collected operational data to build a predictive failure model, for example, of a wind turbine. Once the model is generated “in the cloud” it can be exported to the turbine control system for more autonomous execution and refinement.

More and more startups appear in the analytics space, from real-time in-memory databases to full analytics platforms. One area of particular interest is around streaming analytics engines, quite opposite to the store-and-analyze-later scenario described earlier. Data is being processed and analyzed “on the fly.” This technology generally scales better to a multi-tiered analytics use case.

Yet another perspective of analytics, and one that’s becoming increasingly important for the Internet of Things, is what I would term one-way vs. closed-loop analytics. One-way analytics is effectively up streaming of data to the cloud for storage and visualization, largely requiring humans to make intelligent interpretations. Where it gets really interesting, is the closed-loop use case, where analytics either in the cloud or in aggregation points in the network, drive changes and control back to the edge device, or devices exchange analytics intelligence between each other.

Regardless of the type of analytics paradigm or use case, the one constant is that data and the ability to make sense of it, is becoming a critical differentiator for the Internet of Things.

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值