Layers

Google Map 最近的一个很有用的增强大概就是图层的重叠概念了,目前提供两个现成的图层,Panoramio and Wikipedia.

Posted by Pamela Fox, Maps API Team

Back in May, we released a feature in Google Maps that let users toggle on additional "layers" of information on top of the map, starting with Panoramio and Wikipedia options. Both of these layers display thousands of variably sized icons on top of the map, and open info windows with more information about the clicked icon. So the user might click a large "W" in New York to read a snippet from Wikipedia's article about the Empire State Building, or they might click on a thumbnail in Black Rock City to see a photo of a Burning Man Temple.

这是一个很重要的概念,因为地图上要显示的信息太多,可以通过不同的图层来显示不同种类的自定义附加信息。

整合效果如下, 动态demo在www.mapbean.com展示showcopy.JPG

import torch import re import numpy as np from typing import List, Tuple, Dict, Any from transformers import ( AutoTokenizer, PreTrainedModel, AutoConfig, LlamaForCausalLM, GenerationConfig ) import torch.nn as nn from tqdm import tqdm from collections import defaultdict import pandas as pd # -------------------------- # 1. 常量与预处理函数(采用新的数据处理方式) # -------------------------- VALID_ELEMENTS = ["C", "N", "P", "O", "S", "Si", "I", "H", "Cl", "F", "Br", "B", "Se", "Fe", "Co", "As", "K", "Na"] element_to_idx = {elem: idx for idx, elem in enumerate(VALID_ELEMENTS)} CHEM_FORMULA_SIZE = r"([A-Z][a-z]*)([0-9]*)" # 新增的分子公式解析函数 def parse_chem_formula(formula): pattern = r'([A-Z][a-z]?)(\d*)' matches = re.findall(pattern, formula) element_counts = defaultdict(int) for (element, count) in matches: count = int(count) if count else 1 element_counts[element] += count return element_counts def generate_element_list(formula): element_counts = parse_chem_formula(formula) elements = [] for element, count in element_counts.items(): # 跳过氢元素 if element != "H": elements.extend([element] * count) return ''.join(elements) # 化学式转密集向量 def formula_to_dense(chem_formula: str) -> torch.Tensor: dense_vec = torch.zeros(len(VALID_ELEMENTS), dtype=torch.float32) matches = re.findall(CHEM_FORMULA_SIZE, chem_formula) for chem_symbol, num_str in matches: num = 1 if num_str == "" else int(num_str) if chem_symbol in element_to_idx: idx = element_to_idx[chem_symbol] dense_vec[idx] += num return dense_vec # 位置编码生成 (PyTorch实现) def positional_encoding(max_position: int, d_model: int, min_freq: float = 1e-4) -> torch.Tensor: position = torch.arange(max_position).unsqueeze(1) div_term = torch.exp(torch.arange(0, d_model, 2) * (-torch.log(torch.tensor(min_freq)) / d_model)) pos_enc = torch.zeros(max_position, d_model) pos_enc[:, 0::2] = torch.sin(position * div_term) pos_enc[:, 1::2] = torch.cos(position * div_term) return pos_enc # 初始化位置编码矩阵 P = positional_encoding(2000000, 254) dimn = 254 # 与位置编码维度一致 # 质谱数据编码 - 优化短数据处理:仅截断过长数据,不填充短数据 def encode_spectra(rag_tensor: list, P: torch.Tensor, dimn: int) -> list: # 返回列表而非堆叠张量 encoded_list = [] max_len = 501 # 仅对过长数据截断,不强制填充短数据 for sample in rag_tensor: mz_list, intensity_list = sample # 创建基础特征矩阵 [m/z, intensity] base_features = torch.tensor([mz_list, intensity_list], dtype=torch.float32).T # 添加位置编码特征(保留原始m/z的位置信息) pos_enc = torch.stack([P[min(int(mz), P.size(0)-1)] for mz in mz_list]) # 组合所有特征 [m/z, intensity, pos_enc...] features = torch.cat([base_features, pos_enc], dim=1) # 仅截断过长数据,短数据保持原始长度(不填充) if features.size(0) > max_len: features = features[:max_len] encoded_list.append(features) # 保留原始长度特征 return encoded_list # 质谱数据预处理 - 确保短数据完整保留 def preprocess_spectra_for_inference(spectrum_str: str, total_mass: float) -> list: # 解析质谱字符串 pairs = spectrum_str.split() mz_list, intensity_list = [], [] for pair in pairs: mz, intensity = pair.split(':') mz_list.append(float(mz)) intensity_list.append(float(intensity)) # 对于仅含一组数据的情况,额外保留原始精度(不四舍五入) if len(pairs) == 1: # 保留原始精度,不进行四舍五入 mz_list = [float(mz) for mz, _ in [pair.split(':') for pair in pairs]] intensity_list = [float(intensity) for _, intensity in [pair.split(':') for pair in pairs]] # 添加总精确质量(作为补充特征,不影响原始数据长度) mz_list.append(total_mass) intensity_list.append(0.0) # 仅对长数据进行四舍五入,短数据保留更多精度 if len(mz_list) > 5: # 数据较长时才简化 mz_list = [round(mz, 2) for mz in mz_list] intensity_list = [round(intensity, 2) for intensity in intensity_list] return [[mz_list, intensity_list]] # -------------------------- # 2. 模型类定义(保持结构,采用新实现) # -------------------------- from transformers.modeling_outputs import CausalLMOutputWithPast from transformers.generation.utils import GenerationMixin class LlamaWithEncoder(PreTrainedModel, GenerationMixin): config_class = AutoConfig _no_split_modules = ["LlamaDecoderLayer", "TransformerEncoderLayer"] def __init__(self, config, base_model=None, encoder1_dim=18, encoder2_dim=256, hidden_dim=512): # 添加config属性 self.config = config super().__init__(self.config) # 如果未提供base_model,则从config初始化 if base_model is None: self.model = LlamaForCausalLM(config) else: self.model = base_model # 第一个Transformer Encoder(处理分子式向量) encoder1_layer = nn.TransformerEncoderLayer( d_model=encoder1_dim, nhead=3, dim_feedforward=hidden_dim, batch_first=True ) self.encoder1 = nn.TransformerEncoder(encoder1_layer, num_layers=2) # 第二个Transformer Encoder(处理质谱矩阵) encoder2_layer = nn.TransformerEncoderLayer( d_model=encoder2_dim, nhead=4, dim_feedforward=hidden_dim, batch_first=True ) self.encoder2 = nn.TransformerEncoder(encoder2_layer, num_layers=2) # 投影层:将编码器输出映射到模型隐藏层维度 self.proj1 = nn.Linear(encoder1_dim, base_model.config.hidden_size) self.proj2 = nn.Linear(encoder2_dim, base_model.config.hidden_size) # 嵌入层(复制基础模型权重但不共享) self.embed_tokens = nn.Embedding( num_embeddings=base_model.config.vocab_size, embedding_dim=base_model.config.hidden_size, padding_idx=base_model.config.pad_token_id ) self.embed_tokens.weight.data = base_model.get_input_embeddings().weight.data.clone() # 必要接口实现 def get_input_embeddings(self): return self.embed_tokens def set_input_embeddings(self, value): self.embed_tokens = value def get_output_embeddings(self): return self.model.get_output_embeddings() def set_output_embeddings(self, new_embeddings): self.model.set_output_embeddings(new_embeddings) def get_base_model(self): return self.model def forward( self, input_ids=None, attention_mask=None, encoder1_inputs=None, encoder2_inputs=None, labels=None, past_key_values=None, output_attentions=None, output_hidden_states=None, return_dict=None,** kwargs ) -> CausalLMOutputWithPast: # 1. 编码器处理 # 分子式编码器输出 enc1_out = self.encoder1(encoder1_inputs) # (batch_size, 1, 18) enc1_out = enc1_out.mean(dim=1) # (batch_size, 18) enc1_proj = self.proj1(enc1_out) # (batch_size, hidden_size) # 质谱编码器输出 enc2_out = self.encoder2(encoder2_inputs) # (batch_size, seq_len, 256) enc2_out = enc2_out.mean(dim=1) # (batch_size, 256) enc2_proj = self.proj2(enc2_out) # (batch_size, hidden_size) # 合并编码器输出(用于替换<mask>) mask_replacement = (enc1_proj + enc2_proj) / 2 # (batch_size, hidden_size) # 2. 获取原始嵌入(避免inplace,全程用新张量) embeddings = self.embed_tokens(input_ids) # (batch_size, seq_len, hidden_size) batch_size, seq_len, hidden_size = embeddings.size() # 3. 替换<mask> token(第三个token,索引=2):用拼接替代inplace赋值 if seq_len > 2: mask_embed = mask_replacement.unsqueeze(1) # (batch_size, 1, hidden_size) # 拆分张量并拼接(前2个token + 替换的mask_embed + 剩余token) part1 = embeddings[:, :2, :] # (batch_size, 2, hidden_size) part2 = mask_embed # (batch_size, 1, hidden_size) part3 = embeddings[:, 3:, :] # (batch_size, seq_len-3, hidden_size) # 拼接为新张量(无inplace操作) new_embeddings = torch.cat([part1, part2, part3], dim=1) # (batch_size, seq_len, hidden_size) else: new_embeddings = embeddings # 序列过短时直接使用原始嵌入 # 4. 调用基础模型 return self.model( inputs_embeds=new_embeddings, attention_mask=attention_mask, labels=labels, past_key_values=past_key_values, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) def prepare_inputs_for_generation(self, input_ids, **kwargs): return { "input_ids": input_ids, "attention_mask": kwargs.get("attention_mask", None), "encoder1_inputs": kwargs.get("encoder1_inputs", None), "encoder2_inputs": kwargs.get("encoder2_inputs", None), } def _get_generation_device(self): return next(self.parameters()).device # -------------------------- # 3. 加载模型和Tokenizer(修复核心错误) # -------------------------- model_path = "./llama3.2-SELFIES" # 模型保存路径 # 加载分词器 tokenizer = AutoTokenizer.from_pretrained(model_path) # 确保mask token存在 if tokenizer.mask_token is None: tokenizer.add_special_tokens({"mask_token": "<mask>"}) # 加载模型配置 config = AutoConfig.from_pretrained(model_path) # 设备配置(优先使用GPU) device = "cuda:0" if torch.cuda.is_available() else "cpu" # 修复:先加载基础模型,再传入自定义模型 base_model = LlamaForCausalLM.from_pretrained( model_path, config=config, torch_dtype=torch.bfloat16, # 确保基础模型为bfloat16精度 device_map=device ) # 使用基础模型初始化自定义模型 model = LlamaWithEncoder( config=config, base_model=base_model, encoder1_dim=18, encoder2_dim=256, hidden_dim=512 ) model = model.to(device) # 先转移到设备 model.eval() # 推理模式 # -------------------------- # 4. 推理函数(适配新的数据处理方式) # -------------------------- def generate_selfies( formula: str, spectrum_str: str, total_mass: float, max_length: int = 512, temperature: float = 0.7, top_p: float = 0.9 ) -> str: """生成SELFIES字符串""" model_device = next(model.parameters()).device # 1. 生成element_list element_list = generate_element_list(formula) # 2. 处理分子式向量 formula_vec = formula_to_dense(formula).unsqueeze(0).unsqueeze(0) # (1,1,18) formula_vec = formula_vec.to(model_device, dtype=torch.bfloat16) # 3. 处理质谱数据(使用新的预处理和编码方式) spectra_data = preprocess_spectra_for_inference(spectrum_str, total_mass) spec_encoded = encode_spectra(spectra_data, P, dimn) # 得到列表形式的编码结果 spec_matrix = spec_encoded[0].to(model_device, dtype=torch.bfloat16).unsqueeze(0) # 添加批次维度 # 4. 构造输入提示 prompt = f"<|User|><s><|Spectrum|>{element_list}</s>" input_ids = tokenizer(prompt, return_tensors="pt").input_ids.to(model_device) attention_mask = torch.ones_like(input_ids).to(model_device) # 5. 模型生成 with torch.no_grad(): # 关闭梯度计算 outputs = model.generate( input_ids=input_ids, attention_mask=attention_mask, encoder1_inputs=formula_vec, # 分子式特征 encoder2_inputs=spec_matrix, # 质谱特征 max_length=max_length, temperature=temperature, top_p=top_p, ) # 6. 解码生成结果(去除特殊token) generated = tokenizer.decode(outputs[0], skip_special_tokens=False) return generated # -------------------------- # 5. 推理示例 # -------------------------- if __name__ == "__main__": # 示例输入 example_formula = "C9H9N3O2S2" # 分子式 example_spectrum_str = "256.0153:100.000000" # mz:intensity格式 example_total_mass = 255.0136185 # 总精确质量 # 生成SELFIES result = generate_selfies( formula=example_formula, spectrum_str=example_spectrum_str, total_mass=example_total_mass, max_length=512, temperature=0.7, top_p=0.95 ) print("生成的SELFIES字符串:") print(result)修改代码,解决问题Some weights of LlamaForCausalLM were not initialized from the model checkpoint at ./llama3.2-SELFIES and are newly initialized: ['lm_head.weight', 'model.embed_tokens.weight', 'model.layers.0.input_layernorm.weight', 'model.layers.0.mlp.down_proj.weight', 'model.layers.0.mlp.gate_proj.weight', 'model.layers.0.mlp.up_proj.weight', 'model.layers.0.post_attention_layernorm.weight', 'model.layers.0.self_attn.k_proj.weight', 'model.layers.0.self_attn.o_proj.weight', 'model.layers.0.self_attn.q_proj.weight', 'model.layers.0.self_attn.v_proj.weight', 'model.layers.1.input_layernorm.weight', 'model.layers.1.mlp.down_proj.weight', 'model.layers.1.mlp.gate_proj.weight', 'model.layers.1.mlp.up_proj.weight', 'model.layers.1.post_attention_layernorm.weight', 'model.layers.1.self_attn.k_proj.weight', 'model.layers.1.self_attn.o_proj.weight', 'model.layers.1.self_attn.q_proj.weight', 'model.layers.1.self_attn.v_proj.weight', 'model.layers.10.input_layernorm.weight', 'model.layers.10.mlp.down_proj.weight', 'model.layers.10.mlp.gate_proj.weight', 'model.layers.10.mlp.up_proj.weight', 'model.layers.10.post_attention_layernorm.weight', 'model.layers.10.self_attn.k_proj.weight', 'model.layers.10.self_attn.o_proj.weight', 'model.layers.10.self_attn.q_proj.weight', 'model.layers.10.self_attn.v_proj.weight', 'model.layers.11.input_layernorm.weight', 'model.layers.11.mlp.down_proj.weight', 'model.layers.11.mlp.gate_proj.weight', 'model.layers.11.mlp.up_proj.weight', 'model.layers.11.post_attention_layernorm.weight', 'model.layers.11.self_attn.k_proj.weight', 'model.layers.11.self_attn.o_proj.weight', 'model.layers.11.self_attn.q_proj.weight', 'model.layers.11.self_attn.v_proj.weight', 'model.layers.12.input_layernorm.weight', 'model.layers.12.mlp.down_proj.weight', 'model.layers.12.mlp.gate_proj.weight', 'model.layers.12.mlp.up_proj.weight', 'model.layers.12.post_attention_layernorm.weight', 'model.layers.12.self_attn.k_proj.weight', 'model.layers.12.self_attn.o_proj.weight', 'model.layers.12.self_attn.q_proj.weight', 'model.layers.12.self_attn.v_proj.weight', 'model.layers.13.input_layernorm.weight', 'model.layers.13.mlp.down_proj.weight', 'model.layers.13.mlp.gate_proj.weight', 'model.layers.13.mlp.up_proj.weight', 'model.layers.13.post_attention_layernorm.weight', 'model.layers.13.self_attn.k_proj.weight', 'model.layers.13.self_attn.o_proj.weight', 'model.layers.13.self_attn.q_proj.weight', 'model.layers.13.self_attn.v_proj.weight', 'model.layers.14.input_layernorm.weight', 'model.layers.14.mlp.down_proj.weight', 'model.layers.14.mlp.gate_proj.weight', 'model.layers.14.mlp.up_proj.weight', 'model.layers.14.post_attention_layernorm.weight', 'model.layers.14.self_attn.k_proj.weight', 'model.layers.14.self_attn.o_proj.weight', 'model.layers.14.self_attn.q_proj.weight', 'model.layers.14.self_attn.v_proj.weight', 'model.layers.15.input_layernorm.weight', 'model.layers.15.mlp.down_proj.weight', 'model.layers.15.mlp.gate_proj.weight', 'model.layers.15.mlp.up_proj.weight', 'model.layers.15.post_attention_layernorm.weight', 'model.layers.15.self_attn.k_proj.weight', 'model.layers.15.self_attn.o_proj.weight', 'model.layers.15.self_attn.q_proj.weight', 'model.layers.15.self_attn.v_proj.weight', 'model.layers.16.input_layernorm.weight', 'model.layers.16.mlp.down_proj.weight', 'model.layers.16.mlp.gate_proj.weight', 'model.layers.16.mlp.up_proj.weight', 'model.layers.16.post_attention_layernorm.weight', 'model.layers.16.self_attn.k_proj.weight', 'model.layers.16.self_attn.o_proj.weight', 'model.layers.16.self_attn.q_proj.weight', 'model.layers.16.self_attn.v_proj.weight', 'model.layers.17.input_layernorm.weight', 'model.layers.17.mlp.down_proj.weight', 'model.layers.17.mlp.gate_proj.weight', 'model.layers.17.mlp.up_proj.weight', 'model.layers.17.post_attention_layernorm.weight', 'model.layers.17.self_attn.k_proj.weight', 'model.layers.17.self_attn.o_proj.weight', 'model.layers.17.self_attn.q_proj.weight', 'model.layers.17.self_attn.v_proj.weight', 'model.layers.18.input_layernorm.weight', 'model.layers.18.mlp.down_proj.weight', 'model.layers.18.mlp.gate_proj.weight', 'model.layers.18.mlp.up_proj.weight', 'model.layers.18.post_attention_layernorm.weight', 'model.layers.18.self_attn.k_proj.weight', 'model.layers.18.self_attn.o_proj.weight', 'model.layers.18.self_attn.q_proj.weight', 'model.layers.18.self_attn.v_proj.weight', 'model.layers.19.input_layernorm.weight', 'model.layers.19.mlp.down_proj.weight', 'model.layers.19.mlp.gate_proj.weight', 'model.layers.19.mlp.up_proj.weight', 'model.layers.19.post_attention_layernorm.weight', 'model.layers.19.self_attn.k_proj.weight', 'model.layers.19.self_attn.o_proj.weight', 'model.layers.19.self_attn.q_proj.weight', 'model.layers.19.self_attn.v_proj.weight', 'model.layers.2.input_layernorm.weight', 'model.layers.2.mlp.down_proj.weight', 'model.layers.2.mlp.gate_proj.weight', 'model.layers.2.mlp.up_proj.weight', 'model.layers.2.post_attention_layernorm.weight', 'model.layers.2.self_attn.k_proj.weight', 'model.layers.2.self_attn.o_proj.weight', 'model.layers.2.self_attn.q_proj.weight', 'model.layers.2.self_attn.v_proj.weight', 'model.layers.20.input_layernorm.weight', 'model.layers.20.mlp.down_proj.weight', 'model.layers.20.mlp.gate_proj.weight', 'model.layers.20.mlp.up_proj.weight', 'model.layers.20.post_attention_layernorm.weight', 'model.layers.20.self_attn.k_proj.weight', 'model.layers.20.self_attn.o_proj.weight', 'model.layers.20.self_attn.q_proj.weight', 'model.layers.20.self_attn.v_proj.weight', 'model.layers.21.input_layernorm.weight', 'model.layers.21.mlp.down_proj.weight', 'model.layers.21.mlp.gate_proj.weight', 'model.layers.21.mlp.up_proj.weight', 'model.layers.21.post_attention_layernorm.weight', 'model.layers.21.self_attn.k_proj.weight', 'model.layers.21.self_attn.o_proj.weight', 'model.layers.21.self_attn.q_proj.weight', 'model.layers.21.self_attn.v_proj.weight', 'model.layers.22.input_layernorm.weight', 'model.layers.22.mlp.down_proj.weight', 'model.layers.22.mlp.gate_proj.weight', 'model.layers.22.mlp.up_proj.weight', 'model.layers.22.post_attention_layernorm.weight', 'model.layers.22.self_attn.k_proj.weight', 'model.layers.22.self_attn.o_proj.weight', 'model.layers.22.self_attn.q_proj.weight', 'model.layers.22.self_attn.v_proj.weight', 'model.layers.23.input_layernorm.weight', 'model.layers.23.mlp.down_proj.weight', 'model.layers.23.mlp.gate_proj.weight', 'model.layers.23.mlp.up_proj.weight', 'model.layers.23.post_attention_layernorm.weight', 'model.layers.23.self_attn.k_proj.weight', 'model.layers.23.self_attn.o_proj.weight', 'model.layers.23.self_attn.q_proj.weight', 'model.layers.23.self_attn.v_proj.weight', 'model.layers.24.input_layernorm.weight', 'model.layers.24.mlp.down_proj.weight', 'model.layers.24.mlp.gate_proj.weight', 'model.layers.24.mlp.up_proj.weight', 'model.layers.24.post_attention_layernorm.weight', 'model.layers.24.self_attn.k_proj.weight', 'model.layers.24.self_attn.o_proj.weight', 'model.layers.24.self_attn.q_proj.weight', 'model.layers.24.self_attn.v_proj.weight', 'model.layers.25.input_layernorm.weight', 'model.layers.25.mlp.down_proj.weight', 'model.layers.25.mlp.gate_proj.weight', 'model.layers.25.mlp.up_proj.weight', 'model.layers.25.post_attention_layernorm.weight', 'model.layers.25.self_attn.k_proj.weight', 'model.layers.25.self_attn.o_proj.weight', 'model.layers.25.self_attn.q_proj.weight', 'model.layers.25.self_attn.v_proj.weight', 'model.layers.26.input_layernorm.weight', 'model.layers.26.mlp.down_proj.weight', 'model.layers.26.mlp.gate_proj.weight', 'model.layers.26.mlp.up_proj.weight', 'model.layers.26.post_attention_layernorm.weight', 'model.layers.26.self_attn.k_proj.weight', 'model.layers.26.self_attn.o_proj.weight', 'model.layers.26.self_attn.q_proj.weight', 'model.layers.26.self_attn.v_proj.weight', 'model.layers.27.input_layernorm.weight', 'model.layers.27.mlp.down_proj.weight', 'model.layers.27.mlp.gate_proj.weight', 'model.layers.27.mlp.up_proj.weight', 'model.layers.27.post_attention_layernorm.weight', 'model.layers.27.self_attn.k_proj.weight', 'model.layers.27.self_attn.o_proj.weight', 'model.layers.27.self_attn.q_proj.weight', 'model.layers.27.self_attn.v_proj.weight', 'model.layers.3.input_layernorm.weight', 'model.layers.3.mlp.down_proj.weight', 'model.layers.3.mlp.gate_proj.weight', 'model.layers.3.mlp.up_proj.weight', 'model.layers.3.post_attention_layernorm.weight', 'model.layers.3.self_attn.k_proj.weight', 'model.layers.3.self_attn.o_proj.weight', 'model.layers.3.self_attn.q_proj.weight', 'model.layers.3.self_attn.v_proj.weight', 'model.layers.4.input_layernorm.weight', 'model.layers.4.mlp.down_proj.weight', 'model.layers.4.mlp.gate_proj.weight', 'model.layers.4.mlp.up_proj.weight', 'model.layers.4.post_attention_layernorm.weight', 'model.layers.4.self_attn.k_proj.weight', 'model.layers.4.self_attn.o_proj.weight', 'model.layers.4.self_attn.q_proj.weight', 'model.layers.4.self_attn.v_proj.weight', 'model.layers.5.input_layernorm.weight', 'model.layers.5.mlp.down_proj.weight', 'model.layers.5.mlp.gate_proj.weight', 'model.layers.5.mlp.up_proj.weight', 'model.layers.5.post_attention_layernorm.weight', 'model.layers.5.self_attn.k_proj.weight', 'model.layers.5.self_attn.o_proj.weight', 'model.layers.5.self_attn.q_proj.weight', 'model.layers.5.self_attn.v_proj.weight', 'model.layers.6.input_layernorm.weight', 'model.layers.6.mlp.down_proj.weight', 'model.layers.6.mlp.gate_proj.weight', 'model.layers.6.mlp.up_proj.weight', 'model.layers.6.post_attention_layernorm.weight', 'model.layers.6.self_attn.k_proj.weight', 'model.layers.6.self_attn.o_proj.weight', 'model.layers.6.self_attn.q_proj.weight', 'model.layers.6.self_attn.v_proj.weight', 'model.layers.7.input_layernorm.weight', 'model.layers.7.mlp.down_proj.weight', 'model.layers.7.mlp.gate_proj.weight', 'model.layers.7.mlp.up_proj.weight', 'model.layers.7.post_attention_layernorm.weight', 'model.layers.7.self_attn.k_proj.weight', 'model.layers.7.self_attn.o_proj.weight', 'model.layers.7.self_attn.q_proj.weight', 'model.layers.7.self_attn.v_proj.weight', 'model.layers.8.input_layernorm.weight', 'model.layers.8.mlp.down_proj.weight', 'model.layers.8.mlp.gate_proj.weight', 'model.layers.8.mlp.up_proj.weight', 'model.layers.8.post_attention_layernorm.weight', 'model.layers.8.self_attn.k_proj.weight', 'model.layers.8.self_attn.o_proj.weight', 'model.layers.8.self_attn.q_proj.weight', 'model.layers.8.self_attn.v_proj.weight', 'model.layers.9.input_layernorm.weight', 'model.layers.9.mlp.down_proj.weight', 'model.layers.9.mlp.gate_proj.weight', 'model.layers.9.mlp.up_proj.weight', 'model.layers.9.post_attention_layernorm.weight', 'model.layers.9.self_attn.k_proj.weight', 'model.layers.9.self_attn.o_proj.weight', 'model.layers.9.self_attn.q_proj.weight', 'model.layers.9.self_attn.v_proj.weight', 'model.norm.weight'] You should probably TRAIN this model on a down-stream task to be able to use it for predictions and inference.
最新发布
08-07
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值