poj 1182 食物链 //带权并查集

食物链
Time Limit:1000MS     Memory Limit:10000KB     64bit IO Format:%lld & %llu

Description

动物王国中有三类动物A,B,C,这三类动物的食物链构成了有趣的环形。A吃B, B吃C,C吃A。 
现有N个动物,以1-N编号。每个动物都是A,B,C中的一种,但是我们并不知道它到底是哪一种。 
有人用两种说法对这N个动物所构成的食物链关系进行描述: 
第一种说法是"1 X Y",表示X和Y是同类。 
第二种说法是"2 X Y",表示X吃Y。 
此人对N个动物,用上述两种说法,一句接一句地说出K句话,这K句话有的是真的,有的是假的。当一句话满足下列三条之一时,这句话就是假话,否则就是真话。 
1) 当前的话与前面的某些真的话冲突,就是假话; 
2) 当前的话中X或Y比N大,就是假话; 
3) 当前的话表示X吃X,就是假话。 
你的任务是根据给定的N(1 <= N <= 50,000)和K句话(0 <= K <= 100,000),输出假话的总数。 

Input

第一行是两个整数N和K,以一个空格分隔。 
以下K行每行是三个正整数 D,X,Y,两数之间用一个空格隔开,其中D表示说法的种类。 
若D=1,则表示X和Y是同类。 
若D=2,则表示X吃Y。

Output

只有一个整数,表示假话的数目。

Sample Input

100 7
1 101 1 
2 1 2
2 2 3 
2 3 3 
1 1 3 
2 3 1 
1 5 5

Sample Output

3

第二次做带权并查集,但学习带权并查集的时候看的就是这个例子,

relation保存的是这个节点与父节点的关系,0表示同类,1表示吃父节点,2表示被父节点吃

#include<stdio.h>
int f[50050],relation[50050];
int n,k,d;
void init()
{
	for(int i=0;i<=n;i++)
	{
		f[i]=i;
		relation[i]=0;
	}
}
int find(int x)
{
	if(x==f[x])
	return x;
	int y=find(f[x]);
	relation[x]=(relation[x]+relation[f[x]])%3;	
	f[x]=y;
	return y;
}
bool merge(int a,int b)
{
	int t1,t2;
	t1=find(a);
	t2=find(b);
	if(t1!=t2)
	{
		f[t1]=t2;
		if(d==2)
		relation[t1]=(relation[b]-relation[a]+1+3)%3;
		else
		relation[t1]=(relation[b]-relation[a]+3)%3; 
		return true; 
	}
	else
	{
		if(d==1)
		{
			if(relation[a]==relation[b])
			return true;
			return false;
		}
		else if(d==2)
		{
			if((relation[a]-relation[b]+3)%3==1)
			{
				return true;
			}
			return false;
		}
	}

}
int main()
{
	int i,x,y,sum=0;
	scanf("%d %d",&n,&k);
	init();
	while(k--)
	{
		scanf("%d %d %d",&d,&x,&y);
		if(x>n||y>n)
			{
				sum++;
			}
		else if(x==y&&d==2)
			{
				sum++;
			}
		else
		{
			if(!merge(x,y))
			{
	//			for(i=1;i<=n;i++)
		//		printf("%d ",relation[i]);
			//	printf("\n");
			//	for(i=1;i<=n;i++)
			//	printf("%d ",f[i]);
			//	printf("\n");
			//	printf("ha%d\n",k);
				sum++;
			}
		
		}
	}
	printf("%d\n",sum);
}



内容概要:本文详细介绍了900W或1Kw,20V-90V 10A双管正激可调电源充电机的研发过程和技术细节。首先阐述了项目背景,强调了充电机在电动汽车和可再生能源领域的重要地位。接着深入探讨了硬件设计方面,包括PCB设计、磁性器件的选择及其对高功率因数的影响。随后介绍了软件实现,特别是程序代码中关键的保护功能如过流保护的具体实现方法。此外,文中还提到了充电机所具备的各种保护机制,如短路保护、欠压保护、电池反接保护、过流保护和过温度保护,确保设备的安全性和可靠性。通讯功能方面,支持RS232隔离通讯,采用自定义协议实现远程监控和控制。最后讨论了散热设计的重要性,以及为满足量产需求所做的准备工作,包括提供详细的PCB图、程序代码、BOM清单、磁性器件和散热片规格书等源文件。 适合人群:从事电力电子产品研发的技术人员,尤其是关注电动汽车充电解决方案的专业人士。 使用场景及目标:适用于需要高效、可靠充电解决方案的企业和个人开发者,旨在帮助他们快速理解和应用双管正激充电机的设计理念和技术要点,从而加速产品开发进程。 其他说明:本文不仅涵盖了理论知识,还包括具体的工程实践案例,对于想要深入了解充电机内部构造和工作原理的人来说是非常有价值的参考资料。
### 并查集算法的时间复杂度分析 并查集是一种高效的用于处理集合合并与查询的算法。在POJ 1182 食物链问题中,使用了并查集来判断动物之间的关系,并且通过路径压缩和按秩合并等优化手段,可以极大地提高算法的效率。 #### 路径压缩的影响 路径压缩是并查集中一种重要的优化技术,它能够将查找过程中经过的所有节点直接连接到根节点上。这种操作使得后续查找的时间复杂度接近于常数[^1]。具体来说,路径压缩后的查找操作时间复杂度可以用阿克曼函数的反函数 \( \alpha(n) \) 来表示,其中 \( n \) 是集合中的元素个数。阿克曼函数的增长速度极慢,因此 \( \alpha(n) \) 在实际应用中几乎可以视为常数。 ```python def Find(x): if x != par[x]: par[x] = Find(par[x]) # 路径压缩 return par[x] ``` #### 按秩合并的作用 按秩合并是一种优化策略,它通过将较小的树合并到较大的树上来减少树的高度。这种方法结合路径压缩后,可以进一步降低操作的时间复杂度[^2]。在实际实现中,可以通过维护一个数组 `rank` 来记录每个集合的深度,并在合并时选择深度较小的树挂接到深度较大的树上。 ```python def Union(x, y): rootX = Find(x) rootY = Find(y) if rootX != rootY: if rank[rootX] > rank[rootY]: par[rootY] = rootX elif rank[rootX] < rank[rootY]: par[rootX] = rootY else: par[rootY] = rootX rank[rootX] += 1 ``` #### 时间复杂度总结 对于 POJ 1182 食物链问题,假设总共有 \( n \) 个动物和 \( m \) 条关系,则初始化并查集的时间复杂度为 \( O(n) \),每次查找或合并操作的时间复杂度为 \( O(\alpha(n)) \)[^2]。由于 \( \alpha(n) \) 的增长极其缓慢,在实际情况下可以认为其为常数。因此,整个算法的时间复杂度主要由关系数量 \( m \) 决定,最终的时间复杂度为 \( O(m \cdot \alpha(n)) \)[^1]。 ### 代码示例 以下是一个完整的并查集实现,适用于 POJ 1182 食物链问题: ```python class UnionFind: def __init__(self, n): self.par = list(range(3 * n)) self.rank = [0] * (3 * n) def Find(self, x): if self.par[x] != x: self.par[x] = self.Find(self.par[x]) return self.par[x] def Union(self, x, y): rootX = self.Find(x) rootY = self.Find(y) if rootX != rootY: if self.rank[rootX] > self.rank[rootY]: self.par[rootY] = rootX elif self.rank[rootX] < self.rank[rootY]: self.par[rootX] = rootY else: self.par[rootY] = rootX self.rank[rootX] += 1 def Same(self, x, y): return self.Find(x) == self.Find(y) ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值