文章通过猫狗识别案例详细解释了混淆矩阵的构成,包括真正例(TP)、假正例(FP)、假反例(FN)和真反例(TN)。在此基础上,介绍了精确率(预测正确的正样本占所有预测为正样本的比例)、召回率(预测正确的正样本占所有实际正样本的比例)以及二者的调和平均F1值。这些指标是评估大模型分类性能的关键,文章通过图示直观展示了它们的关系和应用场景。
从混淆矩阵理解
假定现在有一个猫狗识别程序,并且假定狗为正类别(Positives)猫为负类别(Negatives)。程序在对12张狗和10张猫的混合图片进行识别后,判定其中8张图片为狗,14张图片为猫。
经人工核对在这8张程序判定为狗的图片中仅仅只有5张图片的确为狗,因此这5张图片就被称为预测正确的正样本(True Positives, TP);而余下的3张被称为预测错误的正样本(False Positives, FP)。
经人工核对在14张被判定为猫的图片中仅有7张为真实的猫。即预测正确的负样本(True Negatives, TN);而余下的7张被称为预测错误的负样本(False Negatives, FN)。
,根据这一识别结果,我们便可以得到如图1所示的混淆矩阵(Confuse Matrix)。

图 1. 混淆矩阵图
- (1) TP: 表示将正样本预测为正样本,即预测正确。
- (2) FN: 表示将正样本预测为负样本,即预测错误。
- (3) FP: 表示将负样本预测为正样本,即预测错误。
- (4) TN: 表示将负样本预测为负样本,即预测正确。
定义完上述4种分类情况后就能得出各种场景下的计算指标公式

注意: 当中时称为值,同时也是用得最多的评价指标。
可以看到,精确率计算的是预测对的正样本在整个预测为正样本中的比重,而召回率计算的是预测对的正样本在整个真实正样本中的比重,因此一般来讲,召回率越高也就意味着这个模型寻找正样本的能力越强(例如在判断是否为癌细胞的时候,寻找正样本癌细胞的能力就十分重要),而则是精确率与召回率的调和平均。
从图示直观理解
根据精确率和召回率的定义,我们还可以通过更直观的图示来进行说明,如图2所示。

图 2. 分类情况分布图
在图2中,左侧的所有实心样本点为正样本(相关元素),右侧的所有空心点为负样本,中间的圆形区域为模型预测的正样本(检索元素),即圆形左侧为模型将正样本预测为正样本的情况,右侧为模型将负样本预测为正样本的情况。例如现在可以想象这么一个场景,某一次我们在使用搜索引擎搜索相关内容(正样本)时,搜索引擎一共检索返回了30个搜索页面(搜索引擎认为的正样本),而搜索引擎返回的结果就相当于是图2中对应的圆形区域,所以精确率和召回率还可以通过图3来形象地进行表示。

图 3. 精确率召回率图示
从图3中更能直观地看出,精确率计算的是预测正确的正样本在整个被预测为正样本中的占比;而召回率计算的是预测正确的正样本在所有真实正样本中的占比。
零基础如何高效学习大模型?
为了帮助大家打破壁垒,快速了解大模型核心技术原理,学习相关大模型技术。从原理出发真正入局大模型。在这里我和MoPaaS魔泊云联合梳理打造了系统大模型学习脉络,这份 LLM大模型资料 分享出来:包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程等, 😝有需要的小伙伴,可以 扫描下方二维码免费领取🆓**⬇️⬇️⬇️

【大模型全套视频教程】
教程从当下的市场现状和趋势出发,分析各个岗位人才需求,带你充分了解自身情况,get 到适合自己的 AI 大模型入门学习路线。
从基础的 prompt 工程入手,逐步深入到 Agents,其中更是详细介绍了 LLM 最重要的编程框架 LangChain。最后把微调与预训练进行了对比介绍与分析。
同时课程详细介绍了AI大模型技能图谱知识树,规划属于你自己的大模型学习路线,并且专门提前收集了大家对大模型常见的疑问,集中解答所有疑惑!

深耕 AI 领域技术专家带你快速入门大模型
跟着行业技术专家免费学习的机会非常难得,相信跟着学习下来能够对大模型有更加深刻的认知和理解,也能真正利用起大模型,从而“弯道超车”,实现职业跃迁!

【精选AI大模型权威PDF书籍/教程】
精心筛选的经典与前沿并重的电子书和教程合集,包含《深度学习》等一百多本书籍和讲义精要等材料。绝对是深入理解理论、夯实基础的不二之选。

【AI 大模型面试题 】
除了 AI 入门课程,我还给大家准备了非常全面的**「AI 大模型面试题」,**包括字节、腾讯等一线大厂的 AI 岗面经分享、LLMs、Transformer、RAG 面试真题等,帮你在面试大模型工作中更快一步。
【大厂 AI 岗位面经分享(92份)】

【AI 大模型面试真题(102 道)】

【LLMs 面试真题(97 道)】

【640套 AI 大模型行业研究报告】

【AI大模型完整版学习路线图(2025版)】
明确学习方向,2025年 AI 要学什么,这一张图就够了!

👇👇点击下方卡片链接免费领取全部内容👇👇

抓住AI浪潮,重塑职业未来!
科技行业正处于深刻变革之中。英特尔等巨头近期进行结构性调整,缩减部分传统岗位,同时AI相关技术岗位(尤其是大模型方向)需求激增,已成为不争的事实。具备相关技能的人才在就业市场上正变得炙手可热。
行业趋势洞察:
- 转型加速: 传统IT岗位面临转型压力,拥抱AI技术成为关键。
- 人才争夺战: 拥有3-5年经验、扎实AI技术功底和真实项目经验的工程师,在头部大厂及明星AI企业中的薪资竞争力显著提升(部分核心岗位可达较高水平)。
- 门槛提高: “具备AI项目实操经验”正迅速成为简历筛选的重要标准,预计未来1-2年将成为普遍门槛。
与其观望,不如行动!
面对变革,主动学习、提升技能才是应对之道。掌握AI大模型核心原理、主流应用技术与项目实战经验,是抓住时代机遇、实现职业跃迁的关键一步。

01 为什么分享这份学习资料?
当前,我国在AI大模型领域的高质量人才供给仍显不足,行业亟需更多有志于此的专业力量加入。
因此,我们决定将这份精心整理的AI大模型学习资料,无偿分享给每一位真心渴望进入这个领域、愿意投入学习的伙伴!
我们希望能为你的学习之路提供一份助力。如果在学习过程中遇到技术问题,也欢迎交流探讨,我们乐于分享所知。
*02 这份资料的价值在哪里?*
专业背书,系统构建:
-
本资料由我与MoPaaS魔泊云的鲁为民博士共同整理。鲁博士拥有清华大学学士和美国加州理工学院博士学位,在人工智能领域造诣深厚:
-
- 在IEEE Transactions等顶级学术期刊及国际会议发表论文超过50篇。
- 拥有多项中美发明专利。
- 荣获吴文俊人工智能科学技术奖(中国人工智能领域重要奖项)。
-
目前,我有幸与鲁博士共同进行人工智能相关研究。

内容实用,循序渐进:
-
资料体系化覆盖了从基础概念入门到核心技术进阶的知识点。
-
包含丰富的视频教程与实战项目案例,强调动手实践能力。
-
无论你是初探AI领域的新手,还是已有一定技术基础希望深入大模型的学习者,这份资料都能为你提供系统性的学习路径和宝贵的实践参考,助力你提升技术能力,向大模型相关岗位转型发展。



抓住机遇,开启你的AI学习之旅!


被折叠的 条评论
为什么被折叠?



