计算梯度的三种方法: 数值法(numerical gradient),解析法(analytic gradient),反向传播法(Back propagation gradient)
一个简单的函数:
Python:
f(x,y,z)=(x+y)z
"""
function : f(x,y,z) = (x+y)z
"""
def grad1(x,y,z):
dx = z
dy = z
dz = (x+y)
return (dx,dy,dz)
def grad2(x,y,z,epi):
fx1 = (x+epi+y)*z
fx2 = (x-epi+y)*z
dx = (fx1-fx2)/(2*epi)
fy1 = (x+y+epi)*z
fy2 = (x+y-epi)*z
dy = (fy1-fy2)/(2*epi)
fz1 = (x+y)*(z+epi)
fz2 = (x+y)*(z-epi)
dz = (fz1-fz2)/(2*epi)
return (dx,dy,dz)
def grad3(x,y,z):
p = x+y;
f = p*z;
dp = z
dz = p
dx = 1 * dp
dy = 1 * dp
return (dx,dy,dz)
print ("<df/dx,df/dy,df/dz>: %.2f %.2f %.2f"%(grad1(1,2,3)))
print ("<df/dx,df/dy,df/dz>: %.2f %.2f %.2f"%(grad2(1,2,3,1e-5)))
print ("<df/dx,df/dy,df/dz>: %.2f %.2f %.2f"%(grad3(1,2,3)))
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
- 16
- 17
- 18
- 19
- 20
- 21
- 22
- 23
- 24
- 25
- 26
- 27
- 28
- 29
- 30
- 31
- 32
- 33
- 34
- 35
- 36
- 37
- 38
- 39
- 40
- 41
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
- 16
- 17
- 18
- 19
- 20
- 21
- 22
- 23
- 24
- 25
- 26
- 27
- 28
- 29
- 30
- 31
- 32
- 33
- 34
- 35
- 36
- 37
- 38
- 39
- 40
- 41
结果:
<df/dx,df/dy,df/dz>: 3.00 3.00 3.00
<df/dx,df/dy,df/dz>: 3.00 3.00 3.00
<df/dx,df/dy,df/dz>: 3.00 3.00 3.00