UVa 10130 SuperSale(DP_01背包)

本文介绍了一个关于SuperSale购物的问题:一家人在超市面对各种价格和重量的商品,在每个人的携带能力限制下,如何选择商品以达到购买价值最大化。通过01背包问题的解决思路,使用动态规划算法确定每个人能携带物品的最大价值。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

SuperSale

There is a SuperSale in a SuperHiperMarket. Every person can take only one object of each kind, i.e. one TV, one carrot, but for extra low price. We are going with a whole family to that SuperHiperMarket. Every person can take as many objects, as he/she can carry out from the SuperSale. We have given list of objects with prices and their weight. We also know, what is the maximum weight that every person can stand. What is the maximal value of objects we can buy at SuperSale?

Input Specification

The input consists of T test cases. The number of them (1<=T<=1000) is given on the first line of the input file.

Each test case begins with a line containing a single integer number that indicates the number of objects (1 <= N <= 1000). Then follows N lines, each containing two integers: P and W. The first integer (1<=P<=100) corresponds to the price of object. The second  integer (1<=W<=30) corresponds to the weight of object. Next line contains one integer (1<=G<=100)  it’s the number of people in our group. Next G lines contains maximal weight (1<=MW<=30) that can stand this i-th person from our family (1<=i<=G).

Output Specification

For every test case your program has to determine one integer. Print out the maximal value of goods which we can buy with that family.

Sample Input

2

3

72 17

44 23

31 24

1

26

6

64 26

85 22

52 4

99 18

39 13

54 9

4

23

20

20

26

 

Output for the Sample Input

72

514

 

每个人每个商品只能拿一件  要拿价值尽量高的商品   很简单的01背包题目  求出每个人可以拿的最大值   加起来就是结果了

#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
#define maxn 1005
int p[maxn],w[maxn],d[maxn],pe,t,n,g;
int main()
{
    scanf("%d",&t);
    while (t--)
    {
        scanf("%d",&n);
        for(int i=1;i<=n;++i)
            scanf("%d%d",&p[i],&w[i]);

        scanf("%d",&g);
        int ans=0;
        for(int k=1;k<=g;++k)
            {
                memset(d,0,sizeof(d));
                scanf("%d",&pe);
                for(int i=1;i<=n;++i)
                {
                    for(int j=pe;j>=w[i];j--)
                        d[j]=max(d[j],d[j-w[i]]+p[i]);
                }
                ans+=d[pe];
            }
        printf("%d\n",ans);
    }
    return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值