拉格朗日插值多项式的原理介绍及其应用

  插值,不论在数学中的数值分析中,还是在我们实际生产生活中,都不难发现它的身影,比如造船业和飞机制造业中的三次样条曲线。那么,什么是插值呢?我们可以先看一下插值的定义,如下:

  (定义)如果对于每个1≤i≤n,P(xi)=yi1 \leq i \leq n,P(x_{i})=y_{i}1in,P(xi)=yi,则称函数y=P(x)y=P(x)y=P(x)插值数据点(x1,y1),...,(xn,yn)(x_{1},y_{1}),...,(x_{n},y_{n})(x1,y1),...,(xn,yn).

   插值的定义无疑是清楚明了的,而在众多的数学函数中,多项式无疑是最简单,最常见的函数,关于它的理论研究也最为透彻。因此,我们可以不妨先考虑利用多项式来进行插值。那么,这样的多项式是否总是存在呢?答案是肯定的,因为我们有如下定理:

  (多项式插值定理)令(x1,y1),...,(xn,yn)(x_{1},y_{1}),...,(x_{n},y_{n})(x1,y1),...,(xn,yn)是平面中的nnn个点,各xix_{i}xi互不相同。则有且仅有一个n−1n-1n1次或者更低的多项式PPP满足P(xi)=yi,i=1,2,...,n.P(x_{i})=y_{i},i=1,2,...,n.P(xi)=yi,i=1,2,...,n.

  **证明:**先用归纳法证明存在性,再证明唯一性。
  当n=1n=1n=1时,常函数(0次)P1(x)=y1P_{1}(x)=y_{1}P1(x)=y1即符合要求。假设当n−1n-1n1时存在一个次数≤n−2\leq n-2n2的多项式Pn−1P_{n-1}Pn1,使得Pn−1(xi)=yi,i=1,2,...,n−1.P_{n-1}(x_{i})=y_{i},i=1,2,...,n-1.Pn1(xi)=yi,i=1,2,...,n1.则令Pn(x)=Pn−1(x)+c(x−x1)(x−x2)...(x−xn−1)(x−xn)P_{n}(x)=P_{n-1}(x)+c(x-x_{1})(x-x_{2})...(x-x_{n-1})(x-x_{n})Pn(x)=Pn1(x)+c(xx1)(xx2)...(xxn1)(xxn),其中ccc为待定系数,利用Pn(xn)=ynP_{n}(x_{n})=y_{n}Pn(xn)=yn即可求出待定系数ccc.此时,Pn(xi)=yi,i=1,2,...,n,P_{n}(x_{i})=y_{i},i=1,2,...,n,Pn(xi)=yi,i=1,2,...,n,Pn(x)P_{n}(x)Pn(x)的次数≤n−1\leq n-1n1.这样就证明了存在性。
  其次证明唯一性。假设存在两个这样的多项式,设为P(x)P(x)P(x)Q(x)Q(x)Q(x),它们次数≤n−1\leq n-1n1且都插值经过nnn个点,即P(xi)=Q(xi)=yi,i=1,2,...,n.P(x_{i})=Q(x_{i})=y_{i},i=1,2,...,n.P(xi)=Q(xi)=yi,i=1,2,...,n.H(x)=P(x)−Q(x)H(x)=P(x)-Q(x)H(x)=P(x)Q(x),HHH的次数也≤n−1\leq n-1n1,且有nnn个不同的根x1,x2,...,xnx_{1},x_{2},...,x_{n}x1,x2,...,xn.因此,由多项式基本定理可知,H(x)H(x)H(x)为0多项式,即恒等于0,故有P(x)=Q(x)P(x)=Q(x)P(x)=Q(x).这样就证明了存在性。
  证毕。

  有了以上定理,我们可以放心地使用多项式进行插值,同时,通过上述定理,我们可以用归纳法来构造此多项式,但是,这样的方法难免复杂麻烦。于是,天才的法国数学家拉格朗日(Lagrange)创造性地发明了一种实用的插值多项式方法来解决这个问题,那么,他的方法是怎么样的?
  一般来说,如果我们有nnn个点(x1,y1),...,(xn,yn)(x_{1},y_{1}),...,(x_{n},y_{n})(x1,y1),...,(xn,yn),各xix_{i}xi互不相同。对于1到n之间的每个kkk,定义n−1n-1n1次多项式
Lk(x)=(x−x1)..(x−xk−1)(x−xk+1)...(x−xn)(xk−x1)..(xk−xk−1)(xk−xk+1)...(xk−xn)L_{k}(x) = \frac{(x-x_{1})..(x-x_{k-1})(x-x_{k+1})...(x-x_{n})}{(x_{k}-x_{1})..(x_{k}-x_{k-1})(x_{k}-x_{k+1})...(x_{k}-x_{n})}Lk(x)=(xkx1)..(xkxk1)(xkxk+1)...(xkxn)(xx1)..(xxk1)(xxk+1)...(xxn)
Lk(x)L_{k}(x)Lk(x)具有有趣的性质:Lk(xk)=1,Lk(xj)=0,j≠k.L_{k}(x_{k})=1,L_{k}(x_{j})=0,j\neq k.Lk(xk)=1,Lk(xj)=0,j=k.然后定义一个n−1n-1n1次多项式
Pn−1(x)=y1L1(x)+...+ynLn(x).P_{n-1}(x)=y_{1}L_{1}(x)+...+y_{n}L_{n}(x).Pn1(x)=y1L1(x)+...+ynLn(x).
这样的多项式Pn−1(x)P_{n-1}(x)Pn1(x)满足Pn−1(xi)=yi,i=1,2,...,n.P_{n-1}(x_{i})=y_{i},i=1,2,...,n.Pn1(xi)=yi,i=1,2,...,n.这就是著名的拉格朗日插值多项式!
  以上就是拉格朗日插值多项式的理论介绍部分,接下来我们就要用Python中的Sympy模块来实现拉格朗日插值多项式啦~~
  实现拉格朗日插值多项式的Python代码如下:

from sympy import *

def Lagrange_interpolation(keys, values):
    x = symbols('x')
    t = len(keys)
    ploy = []
    for i in range(t):
        lst = ['((x-'+str(_)+')/('+str(keys[i])+'-'+str(_)+'))' for _ in keys if _ != keys[i]]
        item = '*'.join(lst)
        ploy.append(str(values[i])+'*'+item)
    ploy = '+'.join(ploy)
    
    return factor(expand(ploy))

def main():
    #example 1, interpolate a line 
    x_1 = [1,2]
    y_1 = [3,5]
    if len(x_1) != len(y_1):
        print('The lengths of two list are not equal!')
    else:
        print('Lagrange_interpolation polynomials is:')
        print(Lagrange_interpolation(x_1,y_1))
    
    #example 2, interpolate a parabola
    x_2 = [0,2,3]
    y_2 = [1,2,4]
    if len(x_2) != len(y_2):
        print('The lengths of two list are not equal!')
    else:
        print('Lagrange_interpolation polynomials is:')
        print(Lagrange_interpolation(x_2,y_2))
    
    #example 3
    x_3 = [0,1,2,3]
    y_3 = [2,1,0,-1]
    if len(x_3) != len(y_3):
        print('The lengths of two list are not equal!')
    else:
        print('Lagrange_interpolation polynomials is:')
        print(Lagrange_interpolation(x_3,y_3))
        
main()

函数Lagrange_interpolation()具体实现了拉格朗日插值多项式,参数(keys, values)为list形式的点对,在main()函数中举了三个Lagrange_interpolation()函数的应用实例,一个是插值两个点,即直线,一个是插值三个点,即抛物线,一个是插值四个点,但结果却是一次多项式。该程序的运行结果如下:

![程序运行结果](https://img-blog.youkuaiyun.com/20180108220343531?watermark/2/text/aHR0cDovL2Jsb2cuY3Nkbi5uZXQvamNsaWFuOTE=/font/5a6L5L2T/fontsize/400/fill/I0JBQkFCMA==/dissolve/70/gravity/SouthEast)
  接下来,我们将介绍一个拉格朗日插值多项式的应用,即求 $$1^{k}+2^{k}+...+x^{k}$$ 的求和公式,其中$x,k$为正整数。分析如下:   首先,该求和公式应当是一个至多为k+1次的关于$x$的多项式。然后,我们可以通过取k+2个不同的点,利用拉格朗日插值多项式的办法来求解,这k+2个不同的点的横坐标可以取$x=1,2,...,k+2$,在求出其对应的纵坐标的值。   以下代码分别求出$k=1,2,...,50$的求和公式,并将其插入到Redis中。 ```python from sympy import * import redis

def Lagrange_interpolation(keys, values):
x = symbols(‘x’)
t = len(keys)
ploy = []
for i in range(t):
lst = [‘((x-’+str()+‘)/(’+str(keys[i])+‘-’+str()+‘))’ for _ in keys if _ != keys[i]]
item = ‘‘.join(lst)
ploy.append(str(values[i])+’
’+item)
ploy = ‘+’.join(ploy)

return factor(expand(ploy))

def degree_of_sum(k):
x_list, y_list = [], []
degree = k # degree=k in expression of 1k+2k+…+x^{k}
cul_sum = 0
for i in range(1,degree+3):
x_list.append(i)
cul_sum += i**degree
y_list.append(cul_sum)
return Lagrange_interpolation(x_list,y_list)

def main():
r = redis.Redis(host=‘localhost’, port=6379,db=0)
for k in range(1,51):
expression = str(degree_of_sum(k))
r.hset(‘sum_%s’%k,‘degree’,str(k))
r.hset(‘sum_%s’%k,‘expression’,expression)
print(‘Degree of %d inserted!’%k)

main()

运行以上程序,结果如下:
<center>
![程序运行结果](https://img-blog.youkuaiyun.com/20180108221925388?watermark/2/text/aHR0cDovL2Jsb2cuY3Nkbi5uZXQvamNsaWFuOTE=/font/5a6L5L2T/fontsize/400/fill/I0JBQkFCMA==/dissolve/70/gravity/SouthEast)
</center>
在Redis中的储存结果如下:
<center>
![Redis中储存结果](https://img-blog.youkuaiyun.com/20180108221948384?watermark/2/text/aHR0cDovL2Jsb2cuY3Nkbi5uZXQvamNsaWFuOTE=/font/5a6L5L2T/fontsize/400/fill/I0JBQkFCMA==/dissolve/70/gravity/SouthEast)
</center>
我们可以具体查看当$k=2$时的求和公式,如下:
<center>
![k=2时的求和公式](https://img-blog.youkuaiyun.com/20180108222038385?watermark/2/text/aHR0cDovL2Jsb2cuY3Nkbi5uZXQvamNsaWFuOTE=/font/5a6L5L2T/fontsize/400/fill/I0JBQkFCMA==/dissolve/70/gravity/SouthEast)
</center>
&emsp;&emsp;这样我们就介绍完了一个拉格朗日插值多项式的应用了。看了上面的介绍,聪明又机智的你是否能想到更多拉格朗日插值多项式的应用呢?欢迎大家交流哦~~
&emsp;&emsp;新的一年,新的气象,就从这一篇开始~

***注意:***本人现已开通微信公众号: NLP奇幻之旅(微信号为:easy_web_scrape), 欢迎大家关注哦~~
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值