[Lintcode]Segment Tree Build

本文详细介绍了一种名为区间树的数据结构的构建过程。通过递归方式创建区间树,并为每个节点分配正确的开始和结束值。提供了具体的实现代码示例,帮助读者理解如何从给定的开始和结束值构建出完整的区间树。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

The structure of Segment Tree is a binary tree which each node has two attributes start and end denote an segment / interval.

start and end are both integers, they should be assigned in following rules:

  • The root's start and end is given by build method.
  • The left child of node A hasstart=A.left, end=(A.left + A.right) / 2.
  • The right child of node A hasstart=(A.left + A.right) / 2 + 1, end=A.right.
  • if start equals to end, there will be no children for this node.

Implement a build method with two parameters start andend, so that we can create a corresponding segment tree with every node has the correct start and end value, return the root of this segment tree.

Example

Given start=0, end=3. The segment tree will be:

               [0,  3]
             /        \
      [0,  1]           [2, 3]
      /     \           /     \
   [0, 0]  [1, 1]     [2, 2]  [3, 3]

Given start=1, end=6. The segment tree will be:

               [1,  6]
             /        \
      [1,  3]           [4,  6]
      /     \           /     \
   [1, 2]  [3,3]     [4, 5]   [6,6]
   /    \           /     \
[1,1]   [2,2]     [4,4]   [5,5]
递归,按照描述计算left和right即可。


/**
 * Definition of SegmentTreeNode:
 * public class SegmentTreeNode {
 *     public int start, end;
 *     public SegmentTreeNode left, right;
 *     public SegmentTreeNode(int start, int end) {
 *         this.start = start, this.end = end;
 *         this.left = this.right = null;
 *     }
 * }
 */
public class Solution {
    
    /**
     *@param start, end: Denote an segment / interval
     *@return: The root of Segment Tree
     */
    public SegmentTreeNode build(int start, int end) {
        return helper(start, end);
    }
    
    private SegmentTreeNode helper(int start, int end) {
        if(start > end) return null;
        SegmentTreeNode root = new SegmentTreeNode(start, end);
        if(start == end) return root;

        root.left = helper(start, (start + end) / 2);
        root.right = helper((start + end) / 2 + 1, end);
        
        return root;
    }
}



资源下载链接为: https://pan.quark.cn/s/9e7ef05254f8 行列式是线性代数的核心概念,在求解线性方程组、分析矩阵特性以及几何计算中都极为关键。本教程将讲解如何用C++实现行列式的计算,重点在于如何输出分数形式的结果。 行列式定义如下:对于n阶方阵A=(a_ij),其行列式由主对角线元素的乘积,按行或列的奇偶性赋予正负号后求和得到,记作det(A)。例如,2×2矩阵的行列式为det(A)=a11×a22-a12×a21,而更高阶矩阵的行列式可通过Laplace展开或Sarrus规则递归计算。 在C++中实现行列式计算时,首先需定义矩阵类或结构体,用二维数组存储矩阵元素,并实现初始化、加法、乘法、转置等操作。为支持分数形式输出,需引入分数类,包含分子和分母两个整数,并提供与整数、浮点数的转换以及加、减、乘、除等运算。C++中可借助std::pair表示分数,或自定义结构体并重载运算符。 计算行列式的函数实现上,3×3及以下矩阵可直接按定义计算,更大矩阵可采用Laplace展开或高斯 - 约旦消元法。Laplace展开是沿某行或列展开,将矩阵分解为多个小矩阵的行列式乘积,再递归计算。在处理分数输出时,需注意避免无限循环和除零错误,如在分数运算前先约简,确保分子分母互质,且所有计算基于整数进行,最后再转为浮点数,以避免浮点数误差。 为提升代码可读性和可维护性,建议采用面向对象编程,将矩阵类和分数类封装,每个类有明确功能和接口,便于后续扩展如矩阵求逆、计算特征值等功能。 总结C++实现行列式计算的关键步骤:一是定义矩阵类和分数类;二是实现矩阵基本操作;三是设计行列式计算函数;四是用分数类处理精确计算;五是编写测试用例验证程序正确性。通过这些步骤,可构建一个高效准确的行列式计算程序,支持分数形式计算,为C++编程和线性代数应用奠定基础。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值