限流算法
我们会努力提升API的吞吐量和QPS(Query Per Second 每秒查询量),但总归有上限.为了应对巨大流量的瞬间提交,我们会做对应的限流处理.
计数器
计数器就是统计记录单位时间内进入系统或者某一接口的请求次数,在限定的次数内的请求则正常接收处理,超过次数的请求则拒绝掉,或者改为异步处理。
滑动时间窗口
这个名称要跟TCP的窗口滑动区分开来,但是理解之后会发现其实也是有点相似。
计数器算法对流量的限制比较粗放,而滑动时间窗口的算法则是对流量进行更加平稳的控制。上面的计数器的单位时间是1分钟,而在使用滑动时间窗口,可以把1分钟分成6格,每格时间长度是10s,每一格又各自管理一个计数器,单位时间用一个长度为60s的窗口描述。一个请求进入系统,对应的时间格子的计数器便会+1,而每过10s,这个窗口便会向右滑动一格。只要窗口包括的所有格子的计数器总和超过限流上限,便会拒绝后面的请求。
漏桶算法
漏桶算法的基本思想,是将请求看作水流,用一个底下有洞的桶盛装,底下的洞漏出水的速率是恒定的,所有请求进入系统的时候都会先进入这个桶,并慢慢由桶流出交给后台服务。桶有一个固定大小,当水流量超过这个大小的时候,多余的请求都会被丢弃。
令牌桶算法
令牌桶(token bucket)算法,指的是设计一个容器(即“桶”),由某个组件持续运行往该容器中添加令牌(token),令牌可以是简单的数字、字符或组合,也可以仅仅是一个计数,然后每个请求进入系统时,需要从桶中领取一个令牌,所有请求都必须有令牌才能进入后端系统。当令牌桶空时,拒绝请求;当令牌桶满时,不再往其中添加新的令牌。
优点:可以应对流量突刺,当有大量请求瞬间进来时,可以消耗存放的令牌,应对流量突刺。而,当流量小的时候,令牌会存储下来,以备用。
85万+

被折叠的 条评论
为什么被折叠?



