Python的网络爬虫及电影可视化系统的设计与实现

Python的网络爬虫及电影可视化系统的设计与实现

一、服务内容
包括java(包括ssm、springboot、vue等框架),python(Django或Flask),asp.net,小程序,php等编程语言系统都可开发。
二、开发工具及技术 
Python3.6.8,Django3,mysql8,navicat数据库管理工具,html页面,javascript脚本,jquery脚本,bootstrap前端框架,layer弹窗组件、webuploader文件上传组件等。
三、项目访问路径
前台首页地址:http://127.0.0.1:8000/
后台首页地址:http://127.0.0.1:8000/admin
管理员账号:admin    管理员mi码:123456
四、技术说明
开发框架使用经典的django框架,这也是python web开发的主流框架,采用了MTV的框架模式,即模型M,视图V和模版T,通过pycharm创建一个新的django框架项目,pycharm会生成django的基本配置,直接运行后就可以在浏览器访问django默认首页,只是在生成的框架中添加自定义模块功能。

64cf7e0691224a5ab06a14ce156c3236.png

c33869ebc9464d859e22bb01492de35f.png 

76aaa510c3cf4f04b3858d4e84914864.png 

d21eef357ac84fae8e143cbbd8ef7d7e.png 

6aaf209021204c8d831ec2d3152bed63.png 

 

【无人机】基于改进粒子群算法的无人机路径规划研究[和遗传算法、粒子群算法进行比较](Matlab代码实现)内容概要:本文围绕基于改进粒子群算法的无人机路径规划展开研究,重点探讨了在复杂环境中利用改进粒子群算法(PSO)实现无人机三维路径规划的方法,并将其遗传算法(GA)、标准粒子群算法等传统优化算法进行对比分析。研究内容涵盖路径规划的多目标优化、避障策略、航路点约束以及算法收敛性和寻优能力的评估,所有实验均通过Matlab代码实现,提供了完整的仿真验证流程。文章还提到了多种智能优化算法在无人机路径规划中的应用比较,突出了改进PSO在收敛速度和全局寻优方面的优势。; 适合人群:具备一定Matlab编程基础和优化算法知识的研究生、科研人员及从事无人机路径规划、智能优化算法研究的相关技术人员。; 使用场景及目标:①用于无人机在复杂地形或动态环境下的三维路径规划仿真研究;②比较不同智能优化算法(如PSO、GA、蚁群算法、RRT等)在路径规划中的性能差异;③为多目标优化问题提供算法选型和改进思路。; 阅读建议:建议读者结合文中提供的Matlab代码进行实践操作,重点关注算法的参数设置、适应度函数设计及路径约束处理方式,同时可参考文中提到的多种算法对比思路,拓展到其他智能优化算法的研究改进中。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值