一.redis中的数据特征
Redis是一种内存级数据库,所有数据均存放在内存中,内存中的数据可以通过TTL指令获取其状态
- XX :具有时效性的数据
- -1 :永久有效的数据
- -2 :已经过期的数据 或 被删除的数据 或 未定义的数据
过期的数据真的删除了吗?
倒垃圾

cpu执行指令

二.数据删除策略
- 定时删除
- 惰性删除
- 定期删除
时效性数据的存储结构

数据删除策略的目标
在内存占用与CPU占用之间寻找一种平衡,顾此失彼都会造成整体redis性能的下降,甚至引发服务器宕机或
内存泄露
1.定时删除
创建一个定时器,当key设置有过期时间,且过期时间到达时,由定时器任务立即执行对键的删除操作
优点:节约内存,到时就删除,快速释放掉不必要的内存占用
缺点:CPU压力很大,无论CPU此时负载量多高,均占用CPU,会影响redis服务器响应时间和指令吞吐量
总结:用处理器性能换取存储空间 (拿时间换空间)


2.惰性删除
数据到达过期时间,不做处理。等下次访问该数据时
- 如果未过期,返回数据
- 发现已过期,删除,返回不存在
优点:节约CPU性能,发现必须删除的时候才删除
缺点:内存压力很大,出现长期占用内存的数据
总结:用存储空间换取处理器性能(拿空间换时间)


3.定期删除
两种方案都走极端,有没有折中方案?


- Redis启动服务器初始化时,读取配置server.hz的值,默认为10
- 每秒钟执行server.hz次(服务器轮询--数据库轮询--检查)serverCron() --> databasesCron() --> activeExpireCycle()
- activeExpireCycle()对每个expires[*]逐一进行检测,每次执行250ms/server.hz
- 对某个expires[*]检测时,随机挑选W个key检测
- 如果key超时,删除key
- 如果一轮中删除的key的数量>W*25%,循环该过程
- 如果一轮中删除的key的数量≤W*25%,检查下一个expires[*],0-15循环
- W取值=ACTIVE_EXPIRE_CYCLE_LOOKUPS_PER_LOOP属性值
- 参数current_db用于记录activeExpireCycle() 进入哪个expires[*] 执行
- 如果activeExpireCycle()执行时间到期,下次从current_db继续向下执行
周期性轮询redis库中的时效性数据,采用随机抽取的策略,利用过期数据占比的方式控制删除频度
- 特点1:CPU性能占用设置有峰值,检测频度可自定义设置
- 特点2:内存压力不是很大,长期占用内存的冷数据会被持续清理
总结:周期性抽查存储空间(随机抽查,重点抽查)
4.删除策略对比

redis内部默认使用:惰性删除+定期删除
三.逐出(淘汰)算法
1.新数据进入检测
当新数据进入redis时,如果内存不足怎么办?
Redis使用内存存储数据,在执行每一个命令前,会调用freeMemoryIfNeeded()检测内存是否充足。如
果内存不满足新加入数据的最低存储要求,redis要临时删除一些数据为当前指令清理存储空间。清理数据
的策略称为逐出算法。
注意:逐出数据的过程不是100%能够清理出足够的可使用的内存空间,如果不成功则反复执行。当对所
有数据尝试完毕后,如果不能达到内存清理的要求,将出现错误信息。
![]()
2.影响数据逐出的相关配置
2.1 最大可使用内存
maxmemory
占用物理内存的比例,默认值为0,表示不限制。生产环境中根据需求设定,通常设置在50%以上。
2.2 每次选取待删除数据的个数
maxmemory-samples
选取数据时并不会全库扫描,导致严重的性能消耗,降低读写性能。因此采用随机获取数据的方式作为待检测删除数据
2.3 逐出策略
maxmemory-policy
达到最大内存后的,对被挑选出来的数据进行删除的策略
检测易失数据(可能会过期的数据集server.db[i].expires )
① volatile-lru:挑选最近最少使用的数据淘汰
② volatile-lfu:挑选最近使用次数最少的数据淘汰
③ volatile-ttl:挑选将要过期的数据淘汰
④ volatile-random:任意选择数据淘汰

检测全库数据(所有数据集server.db[i].dict )
⑤ allkeys-lru:挑选最近最少使用的数据淘汰
⑥ allkeys-lfu:挑选最近使用次数最少的数据淘汰
⑦ allkeys-random:任意选择数据淘汰
放弃数据驱逐
⑧ no-enviction(驱逐):禁止驱逐数据(redis4.0中默认策略),会引发错误OOM(Out Of Memory)
设置方式:
![]()
2.4 查看性能效果
使用INFO命令输出监控信息,查询缓存 hit 和 miss 的次数,根据业务需求调优Redis配置

申明:内容来自网络,仅供学习使用
参考:http://yun.itheima.com/course/611.html?stt
探讨Redis中的数据删除策略,包括定时删除、惰性删除和定期删除,以及数据逐出算法,如LRU、LFU和随机删除,确保内存高效利用。
1万+

被折叠的 条评论
为什么被折叠?



