ReentrantReadWriteLock
1、读写锁接口ReadWriteLock接口的一个具体实现,实现了读写锁的分离,
2、支持公平和非公平,底层也是基于AQS实现
3、允许从写锁降级为读锁
流程:先获取写锁,然后获取读锁,最后释放写锁;但不能从读锁升级到写锁
4、重入:读锁后还可以获取读锁;获取了写锁之后既可以再次获取写锁又可以获取读锁
核心:读锁是共享的,写锁是独占的。 读和读之间不会互斥,读和写、写和读、写和写之间才会互斥,主要是提升了读写的性能
ReentrantLock是独占锁且可重入的,相比synchronized而言功能更加丰富也更适合复杂的并发场景,但是也有弊端,假如有两个线程A/B访问数据,加锁是为了防止线程A在写数据, 线程B在读数据造成的数据不一致; 但线程A在读数据,线程C也在读数据,读数据是不会改变数据没有必要加锁,但是还是加锁了,降低了程序的性能,所以就有了ReadWriteLock读写锁接口
场景:读多写少,比如设计一个缓存组件 或 提高Collection的并发性
class CachedData {
* Object data;
* volatile boolean cacheValid;
* final ReentrantReadWriteLock rwl = new ReentrantReadWriteLock();
*
* void processCachedData() {
* rwl.readLock().lock();
* if (!cacheValid) {
* // Must release read lock before acquiring write lock
* rwl.readLock().unlock();
* rwl.writeLock().lock();
* try {
* // Recheck state because another thread might have
* // acquired write lock and changed state before we did.
* if (!cacheValid) {
* data = ...
* cacheValid = true;
* }
* // Downgrade by acquiring read lock before releasing write lock
* rwl.readLock().lock();
* } finally {
* rwl.writeLock().unlock(); // Unlock write, still hold read
* }
* }
*
* try {
* use(data);
* } finally {
* rwl.readLock().unlock();
* }
* }
* }}
class RWDictionary {
* private final Map<String, Data> m = new TreeMap<String, Data>();
* private final ReentrantReadWriteLock rwl = new ReentrantReadWriteLock();
* private final Lock r = rwl.readLock();
* private final Lock w = rwl.writeLock();
*
* public Data get(String key) {
* r.lock();
* try { return m.get(key); }
* finally { r.unlock(); }
* }
* public String[] allKeys() {
* r.lock();
* try { return m.keySet().toArray(); }
* finally { r.unlock(); }
* }
* public Data put(String key, Data value) {
* w.lock();
* try { return m.put(key, value); }
* finally { w.unlock(); }
* }
* public void clear() {
* w.lock();
* try { m.clear(); }
* finally { w.unlock(); }
* }
* }}