为什么说Redis是单线程的以及Redis为什么这么快!

本文深入探讨Redis作为高性能内存数据库的原因,解析其基于单线程与多路I/O复用模型的设计原理,以及如何通过单线程实现高并发和高速度。

一、前言
  
  近乎所有与Java相关的面试都会问到缓存的问题,基础一点的会问到什么是“二八定律”、什么是“热数据和冷数据”,复杂一点的会问到缓存雪崩、缓存穿透、缓存预热、缓存更新、缓存降级等问题,这些看似不常见的概念,都与我们的缓存服务器相关,一般常用的缓存服务器有Redis、Memcached等,而笔者目前最常用的也只有Redis这一种。
  
  如果你在以前面试的时候还没有遇到过面试官问你《为什么说Redis是单线程的以及Redis为什么这么快!》,那么你看到这篇文章的时候,你应该觉得是一件很幸运的事情!如果你刚好是一位高逼格的面试官,你也可以拿这道题去面试对面“望穿秋水”般的小伙伴,测试一下他的掌握程度。
  
  好啦!步入正题!我们先探讨一下Redis是什么,Redis为什么这么快、然后在探讨一下为什么Redis是单线程的?
  
  二、Redis简介
  
  Redis是一个开源的内存中的数据结构存储系统,它可以用作:数据库、缓存和消息中间件。
  
  它支持多种类型的数据结构,如字符串(String),散列(Hash),列表(List),集合(Set),有序集合(Sorted Set或者是ZSet)与范围查询,Bitmaps,Hyperloglogs 和地理空间(Geospatial)索引半径查询。其中常见的数据结构类型有:String、List、Set、Hash、ZSet这5种。
  
  Redis 内置了复制(Replication),LUA脚本(Lua scripting), LRU驱动事件(LRU eviction),事务(Transactions) 和不同级别的磁盘持久化(Persistence),并通过 Redis哨兵(Sentinel www.xucaizxyl.com)和自动分区(Cluster)提供高可用性(High Availability)。
  
  Redis也提供了持久化的选项,这些选项可以让用户将自己的数据保存到磁盘上面进行存储。根据实际情况,可以每隔一定时间将数据集导出到磁盘(快照),或者追加到命令日志中(AOF只追加文件),他会在执行写命令时,将被执行的写命令复制到硬盘里面。您也可以关闭持久化功能,将Redis作为一个高效的网络的缓存数据功能使用。
  
  Redis不使用表,他的数据库不会预定义或者强制去要求用户对Redis存储的不同数据进行关联。
  
  数据库的工作模式按存储方式可分为:硬盘数据库和内存数据库。Redis 将数据储存在内存里面,读写数据的时候都不会受到硬盘 I/O 速度的限制,所以速度极快。
  
  

(1)硬盘数据库的工作模式: 
这里写图片描述 
(2)内存数据库的工作模式: 
这里写图片描述

看完上述的描述,对于一些常见的Redis相关的面试题,是否有所认识了,例如:什么是Redis、Redis常见的数据结构类型有哪些、Redis是如何进行持久化的等。

三、Redis到底有多快

Redis采用的是基于内存的采用的是单进程单线程模型的 KV 数据库,由C语言编写,官方提供的数据是可以达到100000+的QPS(每秒内查询次数)。这个数据不比采用单进程多线程的同样基于内存的 KV 数据库 Memcached 差!有兴趣的可以参考官方的基准程序测试《How fast is Redis?》(https://redis.io/topics/benchmarks

这里写图片描述 
横轴是连接数,纵轴是QPS。此时,这张图反映了一个数量级,希望大家在面试的时候可以正确的描述出来,不要问你的时候,你回答的数量级相差甚远!

四、Redis为什么这么快

1、完全基于内存,绝大部分请求是纯粹的内存操作,非常快速。数据存在内存中,类似于HashMap,HashMap的优势就是查找和操作的时间复杂度都是O(1);

2、数据结构简单,对数据操作也简单,Redis中的数据结构是专门进行设计的;

3、采用单线程,避免了不必要的上下文切换和竞争条件,也不存在多进程或者多线程导致的切换而消耗 CPU,不用去考虑各种锁的问题,不存在加锁释放锁操作,没有因为可能出现死锁而导致的性能消耗;

4、使用多路I/O复用模型,非阻塞IO;

5、使用底层模型不同,它们之间底层实现方式以及与客户端之间通信的应用协议不一样,Redis直接自己构建了VM 机制 ,因为一般的系统调用系统函数的话,会浪费一定的时间去移动和请求;

以上几点都比较好理解,下边我们针对多路 I/O 复用模型进行简单的探讨:

(1)多路 I/O 复用模型

多路I/O复用模型是利用 select、poll、epoll 可以同时监察多个流的 I/O 事件的能力,在空闲的时候,会把当前线程阻塞掉,当有一个或多个流有 I/O 事件时,就从阻塞态中唤醒,于是程序就会轮询一遍所有的流(epoll 是只轮询那些真正发出了事件的流),并且只依次顺序的处理就绪的流,这种做法就避免了大量的无用操作。

这里“多路”指的是多个网络连接,“复用”指的是复用同一个线程。采用多路 I/O 复用技术可以让单个线程高效的处理多个连接请求(尽量减少网络 IO 的时间消耗),且 Redis 在内存中操作数据的速度非常快,也就是说内存内的操作不会成为影响Redis性能的瓶颈,主要由以上几点造就了 Redis 具有很高的吞吐量。

五、那么为什么Redis是单线程的

我们首先要明白,上边的种种分析,都是为了营造一个Redis很快的氛围!官方FAQ表示,因为Redis是基于内存的操作,CPU不是Redis的瓶颈,Redis的瓶颈最有可能是机器内存的大小或者网络带宽。既然单线程容易实现,而且CPU不会成为瓶颈,那就顺理成章地采用单线程的方案了(毕竟采用多线程会有很多麻烦!)。

这里写图片描述 
可以参考:https://redis.io/topics/faq

看到这里,你可能会气哭!本以为会有什么重大的技术要点才使得Redis使用单线程就可以这么快,没想到就是一句官方看似糊弄我们的回答!但是,我们已经可以很清楚的解释了为什么Redis这么快,并且正是由于在单线程模式的情况下已经很快了,就没有必要在使用多线程了!

但是,我们使用单线程的方式是无法发挥多核CPU 性能,不过我们可以通过在单机开多个Redis 实例来完善!

警告1:这里我们一直在强调的单线程,只是在处理我们的网络请求的时候只有一个线程来处理,一个正式的Redis Server运行的时候肯定是不止一个线程的,这里需要大家明确的注意一下!例如Redis进行持久化的时候会以子进程或者子线程的方式执行(具体是子线程还是子进程待读者深入研究);例如我在测试服务器上查看Redis进程,然后找到该进程下的线程:

这里写图片描述

ps命令的“-T”参数表示显示线程(Show threads, possibly with SPID column.)“SID”栏表示线程ID,而“CMD”栏则显示了线程名称。

警告2:在上图中FAQ中的最后一段,表述了从Redis 4.0版本开始会支持多线程的方式,但是,只是在某一些操作上进行多线程的操作!所以该篇文章在以后的版本中是否还是单线程的方式需要读者考证!

六、注意点

1、我们知道Redis是用”单线程-多路复用IO模型”来实现高性能的内存数据服务的,这种机制避免了使用锁,但是同时这种机制在进行sunion之类的比较耗时的命令时会使redis的并发下降。因为是单一线程,所以同一时刻只有一个操作在进行,所以,耗时的命令会导致并发的下降,不只是读并发,写并发也会下降。而单一线程也只能用到一个CPU核心,所以可以在同一个多核的服务器中,可以启动多个实例,组成master-master或者master-slave的形式,耗时的读命令可以完全在slave进行。

需要改的redis.conf项:

 
  1. pidfile /var/run/redis/redis_6377.pid #pidfile要加上端口号

  2. port 6377 #这个是必须改的

  3. logfile /var/log/redis/redis_6377.log #logfile的名称也加上端口号

  4. dbfilename dump_6377.rdb #rdbfile也加上端口号

2、“我们不能任由操作系统负载均衡,因为我们自己更了解自己的程序,所以,我们可以手动地为其分配CPU核,而不会过多地占用CPU,或是让我们关键进程和一堆别的进程挤在一起。”。 
CPU 是一个重要的影响因素,由于是单线程模型,Redis 更喜欢大缓存快速 CPU, 而不是多核

在多核 CPU 服务器上面,Redis 的性能还依赖NUMA 配置和处理器绑定位置。最明显的影响是 redis-benchmark 会随机使用CPU内核。为了获得精准的结果,需要使用固定处理器工具(在 Linux 上可以使用 taskset)。最有效的办法是将客户端和服务端分离到两个不同的 CPU 来高校使用三级缓存。

七、扩展

以下也是你应该知道的几种模型,祝你的面试一臂之力!

1、单进程多线程模型:MySQL、Memcached、Oracle(Windows版本);

2、多进程模型:Oracle(Linux版本);

3、Nginx有两类进程,一类称为Master进程(相当于管理进程),另一类称为Worker进程(实际工作进程)。启动方式有两种:

(1)单进程启动:此时系统中仅有一个进程,该进程既充当Master进程的角色,也充当Worker进程的角色。

(2)多进程启动:此时系统有且仅有一个Master进程,至少有一个Worker进程工作。

(3)Master进程主要进行一些全局性的初始化工作和管理Worker的工作;事件处理是在Worker中进行的。

这里写图片描述


参考文章:

1、http://www.syyong.com/db/Redis-why-the-use-of-single-process-and-single-threaded-way-so-fast.html 
2、http://blog.youkuaiyun.com/xxb2008/article/details/42238557 
3、http://blog.youkuaiyun.com/hobbs136/article/details/7619719 
4、http://blog.youkuaiyun.com/yushitao/article/details/43565851

潮汐研究作为海洋科学的关键分支,融合了物理海洋学、地理信息系统及水利工程等多领域知识。TMD2.05.zip是一套基于MATLAB环境开发的潮汐专用分析工具集,为科研人员与工程实践者提供系统化的潮汐建模与计算支持。该工具箱通过模块化设计实现了两大核心功能: 在交互界面设计方面,工具箱构建了图形化操作环境,有效降低了非专业用户的操作门槛。通过预设参数输入模块(涵盖地理坐标、时间序列、测站数据等),用户可自主配置模型运行条件。界面集成数据加载、参数调整、可视化呈现及流程控制等标准化组件,将复杂的数值运算过程转化为可交互的操作流程。 在潮汐预测模块中,工具箱整合了谐波分解法与潮流要素解析法等数学模型。这些算法能够解构潮汐观测数据,识别关键影响要素(包括K1、O1、M2等核心分潮),并生成不同时间尺度的潮汐预报。基于这些模型,研究者可精准推算特定海域的潮位变化周期与振幅特征,为海洋工程建设、港湾规划设计及海洋生态研究提供定量依据。 该工具集在实践中的应用方向包括: - **潮汐动力解析**:通过多站点观测数据比对,揭示区域主导潮汐成分的时空分布规律 - **数值模型构建**:基于历史观测序列建立潮汐动力学模型,实现潮汐现象的数字化重构与预测 - **工程影响量化**:在海岸开发项目中评估人工构筑物对自然潮汐节律的扰动效应 - **极端事件模拟**:建立风暴潮与天文潮耦合模型,提升海洋灾害预警的时空精度 工具箱以"TMD"为主程序包,内含完整的函数库与示例脚本。用户部署后可通过MATLAB平台调用相关模块,参照技术文档完成全流程操作。这套工具集将专业计算能力与人性化操作界面有机结合,形成了从数据输入到成果输出的完整研究链条,显著提升了潮汐研究的工程适用性与科研效率。 资源来源于网络分享,仅用于学习交流使用,请勿用于商业,如有侵权请联系我删除!
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值