使用LlamaIndex和ChatGPT的无代码检索增强生成(RAG)

本文介绍了RAG(检索增强生成)技术如何利用大型语言模型整合外部文档,提升模型准确性和避免‘幻觉’。LlamaIndex等无代码工具简化了RAG的使用,让开发者能在ChatGPT等LLM上实现增强型交互。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

自从ChatGPT和类似的LLM推出以来,出现了大量的RAG工具和库。人们需要了解如何使用LlamaIndex和ChatGPT的无代码RAG。

检索增强生成(RAG)是使用大型语言模型(LLM)的关键工具。RAG使LLM能够将外部文档合并到它们的响应中,从而更紧密地与用户需求保持一致。这个功能在传统上使用LLM犹豫不决的领域尤其有益,尤其是在事实很重要的时候。

自从ChatGPT和类似的LLM推出以来,出现了大量的RAG工具和库。以下是需要了解的关于RAG如何工作以及如何开始使用它与ChatGPT、Claude或选择的LLM。

RAG提供的好处

当开发人员与大型语言模型交互时,它会利用其训练数据中嵌入的知识来制定

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

c++服务器开发

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值