
为了更好评估后端接口性能,我们需要对不同行为的耗时进行比较。从上图可以看出,一个CPU周期少于1纳秒,而一次从北京到上海的跨地域访问可能需要约30毫秒。怎么计算跨地域耗时呢?
我们已知光在真空中传播,折射率为 1,其光速约为 c=30 万公里/秒,当光在其他介质里来面传播,其介质折射自率为 n,光在其中的速度就降为 v=c/n,光纤的材料是二氧化硅,其折射率 n 为 1.44 左右,计算延迟的时候,可以近似认为 1.5,我们通过计算可以得出光纤中的光传输速度近似为 v=c/1.5= 20 万公里/秒。
以北京和深圳为例,直线距离 1920 公里,接近 2000 公里,传输介质如果使用光纤光缆,那么延迟时间 t=L/v = 0.2 万公里/20 万公里/秒=10ms ,也就是说从北京到深圳拉一根 2000 公里的光缆,单纯的距离延迟就要 10ms ,实际上是没有这么长的光缆的,中间是需要通过基站来进行中继,并且当光功率损耗到一定值以后,需要通过转换器加强功率以后继续传输,这个中转也是要消耗时间的。另外数据包在网络中长距离传输的时候是会经过多次的封包和拆包,这个也会消耗时间。
综合考虑各种情况以后,以北京到深圳为例,总的公网延迟大约在 40ms 左右,北京到上海的公网延迟大约在 30ms,如果数据出国的话,延迟会更大,比如中国到美国,延迟一般在 150ms ~ 200ms 左右,因为要经过太平洋的海底光缆过去的。
如果让你进行后端接口的优化,你是首选优化代码行数?还是首选避免跨地域访问呢?
在评估接口性能时,我们需要首先找出最耗时的部分,并优化它,这样优化效果才会立竿见影。上图提供了一个很好的参考。
需要注意的是,上图中没有显示机房内网络的耗时。一次机房内网络的延迟(Ping)通常在1毫秒以内,相比跨地域网络延迟要少很多。
对于机房内的访问,Redis缓存的访问耗时通常在1-5毫秒之间,而数据库的主键索引访问耗时在5-15毫秒之间。当然,这两者最大的区别不仅仅在于耗时,而更重要的是它们在承受高并发访问方面的能力。Redis单机可以承受10万并发(往往瓶颈在网络带宽和CPU),而MySQL要考虑主从读写分离和分库分表,才能稳定支持5千并发以上的访问。
1. 优化前端接口
1.1 核心数据和非核心数据拆分为多个接口
我曾经对用户(会员)主页接口进行了优化,该接口返回的数据非常庞大。由于各个模块的数据都在同一个接口中,只要其中一部分数据的查询耗时较长,整体性能就会下降,导致接口的失败率增加,前端无法展示核心数据。这主要是因为核心数据和非核心数据没有进行隔离,耗时数据和非耗时数据没有分开。
对于庞大的接口,我们需要先梳理每个模块中数据的获取逻辑和性能情况,明确前端必须展示和重点关注的核心数据,并确保这些数据能够快速、稳定地响应给前端。而非核心的数据和性能较差的数据则可以拆分到另外的接口中,即使这些接口的失败率较高,对用户影响也不大。
这种优化方式除了能保证快速返回核心数据,也能提高稳定性。如果非核心数据故障,可以单独降级,不会影响核心数据展示,大大提高了稳定性。
1.2 前端并行调用多个接口
后端提供给前端的接口应保证能够独立调用,避免出现需要先调用A接口再调用B接口的情况。如果接口设计不合理,前端需要的总耗时将是A接口耗时与B接口耗时之和。相反,如果接口能够独立调用,总耗时将取决于A接口和B接口中耗时较长的那个。显然,后者的性能更优。
在A接口与B接口都依赖相同的公共数据的情况下,会导致重复查询。为了优化总耗时,重复查询是无法避免的,因此应着重优化公共数据的性能。
在代码设计层面,应封装每个模块的取值逻辑,避免A接口与B接口出现重复代码或拷贝代码的情况。
1.3 使用MD5加密,防篡改数据,减少重复校验
在提单接口中,需要校验用户对应商品的可见性、是否符合优惠活动规则以及是否可用对应的优惠券等内容。由于用户可能篡改报文来伪造提单请求,后端必须进行校验。然而,由于提单链路本身耗时较长,多次校验以上数据将大大增加接口的耗时。那么,是否可以不进行以上内容的校验呢?
是可以的。在用户提单页面,商品数据、优惠活动数据以及优惠券等数据都是预览接口校验过的。后端可以生成一个预览Token,并将预览结果存在缓存中,前端在提单接口中指定预览Token。后端将校验提单数据和预览数据是否一致,如果不一致,则说明用户伪造了请求。
为了避免预览数据占用过多的缓存空间,可以设置一个过期时间,例如预览数据在15分钟内不进行下单操作,则会自动失效。另外,还可以对关键数据进行MD5加密处理,加密后的数据只有64位,数据量大大减少。后端在提单接口中对关键数据进行MD5加密,并与缓存中的MD5值进行比对,如果不一致,则说明用户伪造了提单数据。
更详细请参考# 如何防止提单数据被篡改?
1.4 同步写接口改为异步写接口
在写接口耗时较高的情况下,可以采取将接口拆分为两步来优化性能。首先,第一步是接收请求并创建一个异步任务,然后将任务交给后端进行处理。第二步是前端轮训异步任务的执行结果,以获取最终结果。
通过将同步接口异步化,可以避免后端线程资源被长时间占用,并且可以避免浏览器和服务器的socket连接被长时间占用,从而提高系统的并发能力和稳定性。
此外,还可以在前端接口设置更长的轮训时间,以有效提高接口的成功率,降低同步接口超时失败的概率,提升系统的性能和用户体验。
1.5 页面静态化
在电商领域,商品详情页和活动详情页通常会有非常高的流量,特别是在秒杀场景或大促场景下,流量会更高。同时,商品详情页通常包含大量的信息,例如商品介绍、商品参数等,导致每次访问商品详情都需要访问后端接口,给后端接口带来很大的压力。
为了解决这个问题,可以考虑将商品详情页中不会变动的部分(如商品介绍、头图、商品参数等)静态化到html文件中,前端浏览器直接访问这些静态文件,而无需访问后端接口。这样做可以极大地减轻商品详情接口的查询压力。
然而,对于未上架的商品详情页、后台管理等页面,仍然需要查询商品详情接口来获取最新的信息。
页面静态化需要先使用模版工具例如Thymeleaf等,将商品详情数据渲染到Html文件,然后使用运维工具(rsync)将html文件同步到各个nginx机器。前端就可以访问对应的商品详情页。
当商品上下架状态变化时,将对应Html文件重新覆盖或置为失效。
1.6 不变资源访问CDN
CDN(内容分发网络)是一种分布式网络架构,它将网站的静态内容缓存在全球各地的服务器上,使用户能够从最近的服务器获取所需内容,从而加速用户访问。这样,用户不需要从原始服务器请求内容,可以减少因网络延迟导致的等待时间,提高用户的访问速度和体验。
通过注入静态Html文件到CDN,可以避免每次用户的请求都访问原始服务器。相反,这些文件会被缓存在CDN的服务器上,因此用户可以直接从离他们最近的服务器获取内容。这种方式可以大大减少因网络延迟导致的潜在用户流失,因为用户能够更快地获取所需的信息。
此外,CDN的使用还可以提高系统在高并发场景下的稳定性。在高并发情况下,原始服务器可能无法承受大量的请求流量,并可能导致系统崩溃或响应变慢。但是,通过将静态Html文件注入到CDN,让CDN来处理部分请求,分担了原始服务器的负载,从而提高了整个系统的稳定性。
通过将商品详情、活动详情等静态Html文件注入到CDN,可以加速用户访问速度,减少用户因网络延迟而流失的可能性,并提高系统在高并发场景下的稳定性。
2. 调用链路优化
调用链路优化重点减少RPC的调用、减少跨地域调用。
2.1 减少跨地域调用
刚才我提到了北京到上海的跨地域调用需要耗费大约30毫秒的时间,这个耗时是相当高的,所以我们应该特别关注调用链路上是否存在跨地域调用的情况。这些跨地域调用包括Rpc调用、Http调用、数据库调用、缓存调用以及MQ调用等等。在整理调用链路的时候,我们还应该标注出跨地域调用的次数,例如跨地域调用数据库可能会出现多次,在链路上我们需要明确标记。我们可以考虑通过降低调用次数来提高性能,因此在设计优化方案时,我们应该特别关注如何减少跨地域调用的次数。
举个例子,在某种情况下,假设上游服务在上海,而我们的服务在北京和上海都有部署,但是数据库和缓存的主节点都在北京,这时候就无法避免跨地域调用。那么我们该如何进行优化呢?考虑到我们的服务会更频繁地访问数据库和缓存,如果让我们上海节点的服务去访问北京的数据库和缓存,那么跨地域调用的次数就会非常多。因此,我们应该让上游服务去访问我们在北京的节点,这样只会有1次跨地域调用,而我们的服务在访问数据库和缓存时就无需进行跨地域调用。
2.2 单元化架构:不同的用户路由到不同的集群单元
如果主数据库位于北京,那么南方的用户每次写请求就只能通过跨地域访问来完成吗?实际上并非如此。数据库的主库不仅可以存在于一个地域,而是可以在多个地域上部署主数据库。将每个用户归属于最近的地域,该用户的请求都会被路由到所在地域的数据库。这样的部署不仅提升了系统性能,还提高了系统的容灾等级,即使单个机房发生故障也不

最低0.47元/天 解锁文章

被折叠的 条评论
为什么被折叠?



