基于Flink流处理的动态实时电商实时分析系统

本文介绍了一个基于Flink的电商实时分析系统,旨在解决批处理和流处理中重复代码的问题。Flink作为一个分布式处理引擎,适用于处理全量和实时增量数据。课程覆盖了Flink、Kafka等多个大数据组件,并涉及频道分析、订单分析等多种业务场景,适合有Flink基础的学习者。通过本课程,学习者将深入了解Flink并能将其应用于实际业务。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

在这里插入图片描述
在开始学习前给大家说下什么是Flink
1.Flink是一个针对流数据和批数据的分布式处理引擎,主要用Java代码实现。
2.Apache Flink作为Apache的顶级项目,Flink集众多优点于一身,包括快速、可靠可扩展、完全兼容Hadoop、使用简便、表现卓越。

通过以上的描述大家对Flink有了一个基本的认识,本套课程不会讲解基础内容,因此建议有Flink基础的同学进行认购。

开始学习前建议大家认真阅读下文:
随着人工智能时代的降临,数据量的爆发,在典型的大数据的业务场景下数据业务最通用的做法是:选用批处理的技术处理全量数据,采用流式计算处理实时增量数据。在绝大多数的业务场景之下,用户的业务逻辑在批处理和流处理之中往往是相同的。但是,用户用于批处理和流处理的两套计算引擎是不同的。

因此,用户通常需要写两套代码。毫无疑问,这带来了一些额外的负担和成本。阿里巴巴的商品数据处理就经常需要面对增量和全量两套不同的业务流程问题,所以阿里就在想,我们能不能有一套统一的大数据引擎技术,用户只需要根据自己的业务逻辑开发一套代码。这样在各种不同的场景下,不管是全量数据还是增量数据,亦或者实时处理,一套方案即可全部支持,这就是阿里选择Flink的背景和初衷。

随着互联网不断发展,数据量不断的增加,大数据也是快速的发展起来了。对于电商系统,拥有着庞大的数据量,对于这么庞大的数据,传统的分析已经满足不了需求。对于电商来说,大数据数据分析是很重要的,它承载着公司的战略部署,以及运营、用户体验等多方面的作用。因此企业对大数据人才的需求会持续旺盛,优秀的大数据人才年收入在50-100万。

目前经过10多年的发展大数据技术也在

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值