系统建模、状态估计与故障诊断中的滤波设计方法
1. 系统建模
1.1 背景
自动化指利用设备和系统取代人工完成特定生产任务或事务管理,涵盖生产控制自动化和业务管理自动化,这两方面相互关联、相互促进,已融入生活各方面。随着科技不断发展创新,自动控制系统在当今时代的应用愈发广泛和必要。
自动控制系统研究的基础是建立控制系统的数学模型,即系统建模。在经典控制理论中,传递函数是系统在复域的数学模型,它由系统输入输出得到的微分方程经拉普拉斯变换而来。传递函数是表征系统的外部描述性数学模型,独立于输入信号,能表征系统动态性能,还可研究系统结构或参数变化对性能的影响,是研究经典控制理论的主要工具之一。
不过,对于经典控制理论中用传递函数描述的线性时不变系统,它只能将单个变量直接与输入相连作为输出,无法描述系统中的其他独立变量,不能包含系统的所有信息,在揭示系统整体运动状态方面存在不足。随着时间推移,研究人员希望了解系统内部运行状态,现代控制理论应运而生,提出了状态空间方程的数学模型。状态空间方程包含状态方程和输出方程,使用状态空间方程分析系统时,系统动态特性由状态变量组成的一阶微分方程描述,能反映系统所有独立变量的变化,从而确定系统的所有内部运动状态。同时,借助计算机可进行分析、设计和实时控制,使现代控制理论能广泛应用于非线性系统、时变系统和随机过程。
无论是经典控制理论还是现代控制理论,建立系统数学模型都是后续控制设计的基础。
1.2 系统建模方法
目前,系统建模主要有两种方法:
- 解析法 :依据物理和化学定律建立系统的动态方程,也称为白盒法。
超级会员免费看
订阅专栏 解锁全文
1405

被折叠的 条评论
为什么被折叠?



