20、用GARCH类模型建模波动率

用GARCH类模型建模波动率

1. GARCH模型介绍

GARCH(广义自回归条件异方差)模型是ARCH模型的扩展。可以将其视为应用于时间序列方差的ARMA模型,ARCH模型中已经体现了自回归(AR)部分,而GARCH模型额外增加了移动平均部分。

GARCH模型的方程如下:
[
\begin{cases}
r_t = \mu + \epsilon_t \
\epsilon_t = \sigma_t z_t \
\sigma_t^2 = \omega + \sum_{i = 1}^{q} \alpha_i \epsilon_{t - i}^2 + \sum_{i = 1}^{p} \beta_i \sigma_{t - i}^2
\end{cases}
]

参数需满足约束条件:(\omega \geq 0),(\alpha_i \geq 0),(\beta_i \geq 0)。GARCH模型有两个超参数:
- (p):滞后方差的数量
- (q):来自均值过程的滞后残差误差的数量

推断ARCH/GARCH模型滞后阶数的一种方法是使用用于预测原始时间序列均值的模型的平方残差。由于残差以零为中心,它们的平方对应于它们的方差。可以检查平方残差的ACF/PACF图,以识别序列方差的自相关模式。

在GARCH模型中,系数还有额外的约束。例如,对于GARCH(1,1)模型,(\alpha_1 + \beta_1)必须小于1,否则模型不稳定。GARCH(0, q)模型等同于ARCH(q)模型。

2. 在Python中估计GARCH(1,1)模型 <
【四轴飞行器】非线性三自由度四轴飞行器模拟器研究(Matlab代码实现)内容概要:本文围绕非线性三自由度四轴飞行器的建模与仿真展开,重点介绍了基于Matlab的飞行器动力学模型构建与控制系统设计方法。通过对四轴飞行器非线性运动方程的推导,建立其在三维空间中的姿态与位置动态模型,并采用数值仿真手段实现飞行器在复杂环境下的行为模拟。文中详细阐述了系统状态方程的构建、控制输入设计以及仿真参数设置,并结合具体代码实现展示了如何对飞行器进行稳定控制与轨迹跟踪。此外,文章还提到了多种优化与控制策略的应用背景,如模型预测控制、PID控制等,突出了Matlab工具在无人机系统仿真中的强大功能。; 适合人群:具备一定自动控制理论基础和Matlab编程能力的高校学生、科研人员及从事无人机系统开发的工程师;尤其适合从事飞行器建模、控制算法研究及相关领域研究的专业人士。; 使用场景及目标:①用于四轴飞行器非线性动力学建模的教学与科研实践;②为无人机控制系统设计(如姿态控制、轨迹跟踪)提供仿真验证平台;③支持高级控制算法(如MPC、LQR、PID)的研究与对比分析; 阅读建议:建议读者结合文中提到的Matlab代码与仿真模型,动手实践飞行器建模与控制流程,重点关注动力学方程的实现与控制器参数调优,同时可拓展至多自由度或复杂环境下的飞行仿真研究。
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符  | 博主筛选后可见
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值