国人“急功近利”的理由和无奈

 

看到某位朋友一篇《由软件工程看中国人急功近利的心态一文,本人从本性上绝对支持,不过也和许多朋友一样,感到一丝无奈。如下是我自己的看法。

 

首发地址:国人“急功近利”的理由和无奈

 

 

1 如果我还在为温饱考虑,我肯定先顾眼前
2 如果今天的生意,明天不一定会有,我肯定先顾眼前
3 如果考虑是按年度,甚至按照月度考核,我肯定先看眼前
4 如果下个月或者明年我都不知道去哪里了,我肯定先看眼前
5 如果我考虑的太久远,也是瞎想,我只能。。。。

没有好的模式,没有真正的核心竞争力,你花费几百万甚至更多,几年时间研究出来的东西,国人可以几天或者几个月就给你仿造出来,而且比你的还好。

这是因为我们大部分人都是跟随者,我们暂时不需要什么远大的理想和抱负,直到我们自认能成为NO1.

【电能质量扰动】基于MLDWT的电能质量扰动分类方法研究(Matlab实现)内容概要:本文研究了一种基于机器学习(ML)离散小波变换(DWT)的电能质量扰动分类方法,并提供了Matlab实现方案。首先利用DWT对电能质量信号进行多尺度分解,提取信号的时频域特征,有效捕捉电压暂降、暂升、中断、谐波、闪变等常见扰动的关键信息;随后结合机器学习分类器(如SVM、BP神经网络等)对提取的特征进行训练与分类,实现对不同类型扰动的自动识别与准确区分。该方法充分发挥DWT在信号去噪与特征提取方面的优势,结合ML强大的模式识别能力,提升了分类精度与鲁棒性,具有较强的实用价值。; 适合群:电气工程、自动化、电力系统及其自动化等相关专业的研究生、科研员及从事电能质量监测与分析的工程技术员;具备一定的信号处理基础Matlab编程能力者更佳。; 使用场景及目标:①应用于智能电网中的电能质量在线监测系统,实现扰动类型的自动识别;②作为高校或科研机构在信号处理、模式识别、电力系统分析等课程的教学案例或科研实验平台;③目标是提高电能质量扰动分类的准确性与效率,为后续的电能治理与设备保护提供决策依据。; 阅读建议:建议读者结合Matlab代码深入理解DWT的实现过程与特征提取步骤,重点关注小波基选择、分解层数设定及特征向量构造对分类性能的影响,并尝试对比不同机器学习模型的分类效果,以全面掌握该方法的核心技术要点。
评论 30
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值