目录
- 一、背景介绍
- 二、实验介绍
- 三、效果展示
- 四、实操指导
-
- 4.1 系统设计
- 4.2 环境搭建
-
- 4.2.1 购买 TDSQL-C Mysql Serverless 实例
- 4.2.2 部署HAI高算力服务器
- 本地python环境搭建
- 4.3 应用构建
-
- 4.3.1 搭建项目框架
- 4.3.2 TDSQL-C 数据库&HAI云算力配置
- 4.3.3 应用开发
- 4.3.4 运行程序并测试效果
- 4.4 效果展示
- 五、清理资源
-
- 5.1 删除TDSQL-C Serverless
- 5.2 删除 HAI 算力
- 六、实验小结
一、背景介绍
AI 技术的应用极大地提升了运营效率,并为电商行业带来了个性化推荐、用户行为分析、库存管理和市场趋势预测等关键领域的数据分析能力,在这种背景下,构建一个高效、可靠的AI电商数据分析系统显得尤为关键。
本手册旨在详细指导开发者如何利用腾讯云的高性能应用服务 HAI 和TDSQL-C MySQL Serverless 版构建 AI电商数据分析系统。HAI作为一个面向AI和科学计算的GPU应用服务产品,提供了强大的计算能力,使得复杂AI模型如LLM的快速部署和运行成为可能,进而支持自然语言处理和图像生成等高级任务。与此同时,TDSQL-C MySQL版作为一款云原生关系型数据库,其100%的MySQL兼容性,以及极致的弹性、高性能和高可用性,使其成为电商业务中处理海量数据存储和查询的理想选择。
本手册将通过 Python 编程语言和基于 Langchain 的框架,逐步引导开发者完成系统的构建和部署。
二、实验介绍
本次实验我将基于 TDSQL-C Mysql Serverless 快速搭建 AI电商数据分析系统,实现思路如下:
- 程序流程图设计
- TDSQL-C Mysql Serverless 搭建
- HAI llama 大模型部署
- 开发环境搭建
- AI电商数据分析系统构建
三、效果展示
(实拍)
四、实操指导
4.1 系统设计
程序流程图
4.2 环境搭建
4.2.1 购买 TDSQL-C Mysql Serverless 实例
- 访问腾讯云官网申请 TDSQL-C Mysql 服务器 点击链接
- 根据图表选择选定服务器
** 选定的服务器为 serverless 的服务器**
- 设置数据库密码和配置信息
- 点击购买即可
5. 前往数据库管理界面
- 管理页面中选择指定区域的 TDSQL-C Mysql 服务器
- 开启实例公网访问
8. 登录在线管理工具
9. 新建数据库 shop
10. 导入数据表
CREATE TABLE `ecommerce_sales_stats` (
`category_id` int NOT NULL COMMENT '分类ID(主键)',
`category_name` varchar(100) NOT NULL COMMENT '分类名称',
`total_sales` decimal(15,2) NOT NULL COMMENT '总销售额',
`steam_sales` decimal(15,2) NOT NULL COMMENT 'Steam平台销售额',
`offline_sales` decimal(15,2) NOT NULL COMMENT '线下实体销售额',
`official_online_sales` decimal(15,2) NOT NULL COMMENT '官方在线销售额',
PRIMARY KEY (`category_id`)
) ENGINE=INNODB DEFAULT CHARSET=utf8mb4 AUTO_INCREMENT=1 COMMENT='电商分类销售统计表';
INSERT INTO `ecommerce_sales_stats` VALUES (1,'电子产品',150000.00,80000.00,30000.00,40000.00),(2,'服装',120000.00,20000.00,60000.00,40000.00),(3,'家居用品',90000.00,10000.00,50000.00,30000.00),(4,'玩具',60000.00,5000.00,30000.00,25000.00),(5,'书籍',45000.00,2000.00,20000.00,23000.00),(6,'运动器材',70000.00,15000.00,25000.00,30000.00),(7,'美容护肤',80000.00,10000.00,30000.00,40000.00),(8,'食品',50000.00,5000.00,25000.00,20000.00),(9,'珠宝首饰',30000.00,2000.00,10000.00,18000.00),(10,'汽车配件',40000.00,10000.00,15000.00,25000.00),(11,'手机配件',75000.00,30000.00,20000.00,25000.00),(12,'电脑配件',85000.00,50000.00,15000.00,20000.00),(13,'摄影器材',50000.00,20000.00,15000.00,15000.00),(14,'家电',120000.00,60000.00,30000.00,30000.00),(15,'宠物用品',30000.00,3000.00,12000.00,16800.00),(16,'母婴用品',70000.00,10000.00,30000.00,30000.00),(17,'旅行用品',40000.00,5000.00,15000.00,20000.00),(18,'艺术品',25000.00,1000.00,10000.00,14000.00),(19,'健康产品',60000.00,8000.00,25000.00,27000.00),(20,'办公用品',55000.00,2000.00,20000.00,33000.00);
CREATE TABLE `users` (
`user_id` int NOT NULL AUTO_INCREMENT COMMENT '用户ID(主键,自增)',
`full_name` varchar(100) NOT NULL COMMENT '用户全名',
`username` varchar(50) NOT NULL COMMENT '用户名',
`email` varchar(100) NOT NULL COMMENT '用户邮箱',
`password_hash` varchar(255) NOT NULL COMMENT '用户密码的哈希值',
`created_at` datetime DEFAULT CURRENT_TIMESTAMP COMMENT '创建时间',
`updated_at` datetime DEFAULT CURRENT_TIMESTAMP ON UPDATE CURRENT_TIMESTAMP COMMENT '更新时间',
`is_active` tinyint(1) DEFAULT '1' COMMENT '是否激活',
PRIMARY KEY (`user_id`),
UNIQUE KEY `email` (`email`)
) ENGINE=INNODB AUTO_INCREMENT=1 DEFAULT CHARSET=utf8mb4 COMMENT='用户表';
INSERT INTO `users` VALUES (1,'张伟','zhangwei','zhangwei@example.com','hashed_password_1','2024-08-18 04:07:18','2024-08-18 04:07:18',1),(2,'李娜','lina','lina@example.com','hashed_password_2','2024-08-18 04:07:18','2024-08-18 04:07:18',1),(3,'王芳','wangfang','wangfang@example.com','hashed_password_3','2024-08-18 04:07:18',&