YOLOv8改进 | 注意力机制 | 添加EMAttention注意力机制(附多个可添加位置)

本文详细介绍了如何在YOLOv8中添加EMAttention注意力机制,以提升模型性能。通过理解EMAttention的框架原理,学习核心代码实现,并跟随步骤在YOLOv8中注册和应用该模块。实验表明,EMAttention能够有效增强模型的特征表示能力,提高计算机视觉任务的准确性。

一、本文介绍

本文给大家带来的改进机制是EMAttention注意力机制,它的核心思想是,重塑部分通道到批次维度,并将通道维度分组为多个子特征,以保留每个通道的信息并减少计算开销。EMA模块通过编码全局信息来重新校准每个并行分支中的通道权重,并通过跨维度交互来捕获像素级别的关系。本文首先给大家提供效果图(由基础版本未作任何修改和修改了本文的改进机制的效果对比图),然后介绍其主要的原理,最后手把手教大家如何添加该注意力机制

推荐指数:⭐⭐⭐⭐⭐

涨点效果:⭐⭐⭐⭐⭐

专栏回顾:YOLOv8改进系列专栏——本专栏持续复习各种顶会内容——科研必备    

目录

一、本文介绍

二、EMAttention的框架原理

三、EMAttention的核心代码 

四、手把手教你添加EMAttention

4.1 EMAttention添加步骤

4.1.1 步骤一

4.1.2 步骤二

4.1.3 步骤三

五、EMAttention的yaml文件和运行记录

5.1 EMAttention的yaml版本一(推荐)

5.2 EMAttention的yaml版本二

5.3 推荐EMAttention可添加的位置 

5.4 EMAttention的训练过程截图 

五、本文总结


二、EMAttention的框架原理

官方论文地址: 官方论文地址

官方代码地址: 官方代码地址

评论 10
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Snu77

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值