YOLOv8改进 | 注意力机制 | 添加MSDA多尺度空洞注意力(全新的YOLOv8改进策略)

本文介绍了MSDA(多尺度空洞注意力)机制,这是一种用于视觉识别的改进方法,源自DilateFormer论文。MSDA利用不同头部的自注意力和多尺度特征提取,减少计算冗余,提升模型效率和检测精度。作者提供了详细步骤教读者如何将MSDA添加到YOLOv8网络中,包括代码实现和训练过程,实验证实在目标检测任务上能显著提高性能。

一、本文介绍

本文给大家带来的改进机制是MSDA(多尺度空洞注意力)发表于今年的中科院一区(算是国内计算机领域的最高期刊了),其全称是"DilateFormer: Multi-Scale Dilated Transformer for Visual Recognition"。MSDA的主要思想是通过线性投影得到特征图X的相应查询、键和值。然后,将特征图的通道分成n个不同的头部,并在不同的头部中以不同的扩张率执行多尺度SWDA来提高模型的处理效率和检测精度。亲测在小目标检测和大尺度目标检测的数据集上都有大幅度的涨点效果(mAP直接涨了大概有0.06左右)最后本文会手把手教你添加MSDA模块到网络结构中。

推荐指数:⭐⭐⭐⭐⭐

涨点效果:⭐⭐⭐⭐⭐

专栏目录:YOLOv8改进有效系列目录 | 包含卷积、主干、检测头、注意力机制、Neck上百种创新机制

专栏回顾YOLOv8改进系列专栏——本专栏持续复习各种顶会内容——科研必备    

目录

一、本文介绍

二、MSDA框架原理

三、MSDA核心代码

四、手把手教你添加MSDA模块

4.1 MSDA添加步骤

4.1.1 步骤一

4.1.2 步骤二

4.1.3 步骤三

4.2 MSDA的yaml文件和训练截图

4.2.1 MSDA的yaml版本一(推荐)

4.2.2 MSDA的yaml版本二

4.3 推荐MSDA可添加的位置 

4.4 MSDA的训练过程截图 

五、本文总结


二、MSDA框架原理

论文地址:官方论文地址点击即可跳转

代码地址:官方代码地址点击即可跳转


在Dilat

评论 16
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Snu77

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值