URLAccessTest

package gao.android;


import java.io.ByteArrayOutputStream;
import java.io.InputStream;
import java.io.OutputStream;
import java.net.HttpURLConnection;
import java.net.URL;


import android.app.Activity;
import android.content.Context;
import android.graphics.Bitmap;
import android.graphics.BitmapFactory;
import android.os.Bundle;
import android.widget.ImageView;


//public class MainActivity extends Activity {
//    ImageView show;
//    public void onCreate(Bundle savedInstanceState) {
//        super.onCreate(savedInstanceState);
//        setContentView(R.layout.main);
//        show=(ImageView)findViewById(R.id.show);
//        try{
//        	URL url=new URL("http://iet.jxufe.cn/Mobile/image/" +
//        	"new01_005.JPG");
//        	InputStream is=url.openStream();
//        	Bitmap bitmap=BitmapFactory.decodeStream(is);
//        	show.setImageBitmap(bitmap);
//        	is.close();
//        	is=url.openStream();
//        	OutputStream os=openFileOutput("gao.jpg",
//        	Context.MODE_WORLD_READABLE);
//        	byte[] buff=new byte[1024];
//        	int hasRead=0;
//        	while((hasRead=is.read())>0){
//        	os.write(buff,0,hasRead);
//        	}
//        	is.close();os.close(); 
//        }catch(Exception ex){
//        	ex.printStackTrace();
//        }               
//    }
//}
public class MainActivity extends Activity {
    public void onCreate(Bundle savedInstanceState) {
        super.onCreate(savedInstanceState);
        setContentView(R.layout.main);       
        try{
        	URL httpUrl = new URL("http://iet.jxufe.cn/Mobile/index.html");
        	HttpURLConnection conn = (HttpURLConnection) httpUrl.openConnection();
        	conn.setConnectTimeout(5* 1000);//设置连接超时
        	conn.setRequestMethod("GET");//以get方式发起请求 ,GET一定要大写。            
        	if (conn.getResponseCode() != 200) 
        		throw new RuntimeException("请求url失败");
        	InputStream iStream = conn.getInputStream();//得到网络返回的输入流
        	String result = readData(iStream, "utf-8");
        	System.out.println(result);
        	conn.disconnect();
        }catch(Exception ex){
        	ex.printStackTrace();
        }               
    }
  //第一个参数为输入流,第二个参数为字符集编码 
    public static String readData(InputStream inSream, String charsetName) throws Exception{
    	ByteArrayOutputStream outStream = new ByteArrayOutputStream();
    	byte[] buffer = new byte[1024];
    	int len = -1;
    	while( (len = inSream.read(buffer)) != -1 ){
    		outStream.write(buffer, 0, len);    		
    	}
    	byte[] data = outStream.toByteArray();
    	outStream.close();
    	inSream.close();
    	return new String(data, charsetName);//得到的是网页的源代码
    }
}


基于数据驱动的 Koopman 算子的递归神经网络模型线性化,用于纳米定位系统的预测控制研究(Matlab代码实现)内容概要:本文围绕“基于数据驱动的 Koopman 算子的递归神经网络模型线性化,用于纳米定位系统的预测控制研究”展开,提出了一种结合数据驱动方法与Koopman算子理论的递归神经网络(RNN)模型线性化方法,旨在提升纳米定位系统的预测控制精度与动态响应能力。研究通过构建数据驱动的线性化模型,克服了传统非线性系统建模复杂、计算开销大的问题,并在Matlab平台上实现了完整的算法仿真与验证,展示了该方法在高精度定位控制中的有效性与实用性。; 适合人群:具备一定自动化、控制理论或机器学习背景的科研人员与工程技术人员,尤其是从事精密定位、智能控制、非线性系统建模与预测控制相关领域的研究生与研究人员。; 使用场景及目标:①应用于纳米级精密定位系统(如原子力显微镜、半导体制造设备)中的高性能预测控制;②为复杂非线性系统的数据驱动建模与线性化提供新思路;③结合深度学习与经典控制理论,推动智能控制算法的实际落地。; 阅读建议:建议读者结合Matlab代码实现部分,深入理解Koopman算子与RNN结合的建模范式,重点关注数据预处理、模型训练与控制系统集成等关键环节,并可通过替换实际系统数据进行迁移验证,以掌握该方法的核心思想与工程应用技巧。
基于粒子群算法优化Kmeans聚类的居民用电行为分析研究(Matlb代码实现)内容概要:本文围绕基于粒子群算法(PSO)优化Kmeans聚类的居民用电行为分析展开研究,提出了一种结合智能优化算法与传统聚类方法的技术路径。通过使用粒子群算法优化Kmeans聚类的初始聚类中心,有效克服了传统Kmeans算法易陷入局部最优、对初始值敏感的问题,提升了聚类的稳定性和准确性。研究利用Matlab实现了该算法,并应用于居民用电数据的行为模式识别与分类,有助于精细化电力需求管理、用户画像构建及个性化用电服务设计。文档还提及相关应用场景如负荷预测、电力系统优化等,并提供了配套代码资源。; 适合人群:具备一定Matlab编程基础,从事电力系统、智能优化算法、数据分析等相关领域的研究人员或工程技术人员,尤其适合研究生及科研人员。; 使用场景及目标:①用于居民用电行为的高效聚类分析,挖掘典型用电模式;②提升Kmeans聚类算法的性能,避免局部最优问题;③为电力公司开展需求响应、负荷预测和用户分群管理提供技术支持;④作为智能优化算法与机器学习结合应用的教学与科研案例。; 阅读建议:建议读者结合提供的Matlab代码进行实践操作,深入理解PSO优化Kmeans的核心机制,关注参数设置对聚类效果的影响,并尝试将其应用于其他相似的数据聚类问题中,以加深理解和拓展应用能力。
在大数据技术快速发展的背景下,网络爬虫已成为信息收集与数据分析的关键工具。Python凭借其语法简洁和功能丰富的优势,被广泛用于开发各类数据采集程序。本项研究“基于Python的企查查企业信息全面采集系统”即在此趋势下设计,旨在通过编写自动化脚本,实现对企查查平台所公示的企业信用数据的系统化抓取。 该系统的核心任务是构建一个高效、可靠且易于扩展的网络爬虫,能够模拟用户登录企查查网站,并依据预设规则定向获取企业信息。为实现此目标,需重点解决以下技术环节:首先,必须深入解析目标网站的数据组织与呈现方式,包括其URL生成规则、页面HTML架构以及可能采用的JavaScript动态渲染技术。准确掌握这些结构特征是制定有效采集策略、保障数据完整与准确的前提。 其次,针对网站可能设置的反爬虫机制,需部署相应的应对方案。例如,通过配置模拟真实浏览器的请求头部信息、采用多代理IP轮换策略、合理设置访问时间间隔等方式降低被拦截风险。同时,可能需要借助动态解析技术处理由JavaScript加载的数据内容。 在程序开发层面,将充分利用Python生态中的多种工具库:如使用requests库发送网络请求,借助BeautifulSoup或lxml解析网页文档,通过selenium模拟浏览器交互行为,并可基于Scrapy框架构建更复杂的爬虫系统。此外,json库用于处理JSON格式数据,pandas库则协助后续的数据整理与分析工作。 考虑到采集的数据规模可能较大,需设计合适的数据存储方案,例如选用MySQL或MongoDB等数据库进行持久化保存。同时,必须对数据进行清洗、去重与结构化处理,以确保其质量满足后续应用需求。 本系统还需包含运行监控与维护机制。爬虫执行过程中可能遭遇网站结构变更、数据格式调整等意外情况,需建立及时检测与自适应调整的能力。通过定期分析运行日志,评估程序的效率与稳定性,并持续优化其性能表现。 综上所述,本项目不仅涉及核心爬虫代码的编写,还需在反爬应对、数据存储及系统维护等方面进行周密设计。通过完整采集企查查的企业数据,该系统可为市场调研、信用评价等应用领域提供大量高价值的信息支持。 资源来源于网络分享,仅用于学习交流使用,请勿用于商业,如有侵权请联系我删除!
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值