端到端的机器学习项目

本文详细介绍了从头到尾的机器学习项目实施步骤,包括问题定义、数据获取、数据探索、数据预处理、模型选择、系统优化、解决方案呈现和上线维护。强调了每个阶段的重点任务,如数据清洗、特征工程和模型调优,旨在实现业务目标。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

端到端的机器学习项目

主要步骤:
  1. Frame the problem and look at the big picture
  2. Get the data
  3. Explore the data to gain insight
  4. Prepare the data to better expose the underlying data patterns to Machine Learning algorithms
  5. Explore many different models and short-list the best ones
  6. Fine-tune your models and combine them into a great solution
  7. Present your solution
  8. Launch, monitor, and maintarin your system
1. Frame the Problem and Look at the Big Picture
  1. Define the object in bussiness terms
  2. How will your solution be used?
  3. What are the current solutions/workarounds(if any?)
  4. How should you frame this problem (supervised/unsupervised, online/offline, etc.)?
  5. How should performance be measured?
  6. Is the performance measure alighed with bussiness objective?
  7. What would be the minimum performance needed to reach the bussiness objective?
  8. What are comparable problem? Can you reuse experience or tools?
  9. Is human expertise available?
  10. How would you solve the problem manually?
  11. List the assumptions you (or others) have made so far?
  12. Verify assumptions if possible
2. Get the Data

Note: automate as much as possible so you can easily get flesh data.

  1. List the data you need and how much you need
  2. Find and document where you can get that data
  3. Check how much space it will take
  4. Check legal obligations, and get authorization if
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值