6月9日 Teaching critics LLM Critics的训练

做RL的过程中,motivation期望,GD Gap方法,

do reasoning models truly understand their problem-solving processes?

understanding the limitations of mathematical reasoing in large language models

### MADDPG 合作导航训练过程的具体实现 MADDPG(Multi-Agent Deep Deterministic Policy Gradient)是一种适用于多智能体协作环境的强化学习算法,其核心思想是通过集中式训练和分布式执行的方式,使得多个智能体能够协调地完成任务,如合作导航。 在合作导航任务中,每个智能体根据局部观测信息做出决策,而Critic网络则利用全局信息(即所有智能体的观测和动作)进行训练,从而实现更高效的策略更新。这种方式能够有效应对部分可观测性问题,并提高智能体之间的协作能力[^2]。 以下是一个MADDPG在合作导航任务中的训练过程的具体实现代码示例: ```python import torch import torch.nn as nn import torch.optim as optim import numpy as np # 定义Actor网络 class Actor(nn.Module): def __init__(self, input_dim, output_dim): super(Actor, self).__init__() self.fc1 = nn.Linear(input_dim, 256) self.fc2 = nn.Linear(256, 128) self.fc3 = nn.Linear(128, output_dim) self.relu = nn.ReLU() self.tanh = nn.Tanh() def forward(self, x): x = self.relu(self.fc1(x)) x = self.relu(self.fc2(x)) x = self.tanh(self.fc3(x)) # 输出动作范围 [-1, 1] return x # 定义Critic网络 class Critic(nn.Module): def __init__(self, input_dim, n_agents): super(Critic, self).__init__() self.fc1 = nn.Linear(input_dim * n_agents, 256) self.fc2 = nn.Linear(256, 128) self.fc3 = nn.Linear(128, 1) self.relu = nn.ReLU() def forward(self, x): x = x.view(x.size(0), -1) # 将所有智能体的状态拼接 x = self.relu(self.fc1(x)) x = self.relu(self.fc2(x)) x = self.fc3(x) return x # 定义MADDPG智能体 class MADDPGAgent: def __init__(self, actor, critic, n_agents, obs_dim, act_dim, lr_actor=1e-4, lr_critic=1e-3, gamma=0.95): self.n_agents = n_agents self.gamma = gamma self.actors = [actor(obs_dim, act_dim) for _ in range(n_agents)] self.critics = [critic(obs_dim, n_agents) for _ in range(n_agents)] self.actor_optims = [optim.Adam(self.actors[i].parameters(), lr=lr_actor) for i in range(n_agents)] self.critic_optims = [optim.Adam(self.critics[i].parameters(), lr=lr_critic) for i in range(n_agents)] def select_actions(self, observations): actions = [] for i, obs in enumerate(observations): obs_tensor = torch.FloatTensor(obs) with torch.no_grad(): action = self.actors[i](obs_tensor).numpy() actions.append(action) return actions def update(self, replay_buffer, batch_size=64): sampled_transitions = replay_buffer.sample(batch_size) observations, actions, rewards, next_observations, dones = zip(*sampled_transitions) observations = torch.FloatTensor(np.array(observations)) actions = torch.FloatTensor(np.array(actions)) rewards = torch.FloatTensor(np.array(rewards)) next_observations = torch.FloatTensor(np.array(next_observations)) dones = torch.FloatTensor(np.array(dones)) # 更新Critic for i in range(self.n_agents): next_actions = torch.cat([self.actors[j](next_observations[:, j]) for j in range(self.n_agents)], dim=1) target_q = self.critics[i](torch.cat([next_observations[:, j] for j in range(self.n_agents)], dim=1)) target_q = rewards[:, i] + (1 - dones[:, i]) * self.gamma * target_q.squeeze() current_q = self.critics[i](torch.cat([observations[:, j] for j in range(self.n_agents)], dim=1)).squeeze() loss = nn.MSELoss()(current_q, target_q.detach()) self.critic_optims[i].zero_grad() loss.backward() self.critic_optims[i].step() # 更新Actor for i in range(self.n_agents): actor_loss = -self.critics[i](torch.cat([observations[:, j] for j in range(self.n_agents)], dim=1)).mean() self.actor_optims[i].zero_grad() actor_loss.backward() self.actor_optims[i].step() # 简单的回放缓冲区 class ReplayBuffer: def __init__(self, capacity=10000): self.buffer = [] self.capacity = capacity def add(self, transition): self.buffer.append(transition) if len(self.buffer) > self.capacity: self.buffer.pop(0) def sample(self, batch_size): indices = np.random.choice(len(self.buffer), batch_size) return [self.buffer[i] for i in indices] # 示例使用 if __name__ == "__main__": n_agents = 2 obs_dim = 4 act_dim = 2 actor = Actor critic = Critic maddpg_agent = MADDPGAgent(actor, critic, n_agents, obs_dim, act_dim) replay_buffer = ReplayBuffer() # 模拟训练过程 for episode in range(1000): observations = np.random.rand(n_agents, obs_dim) # 模拟观测 actions = maddpg_agent.select_actions(observations) rewards = np.random.rand(n_agents) # 模拟奖励 next_observations = np.random.rand(n_agents, obs_dim) # 模拟下一状态 done = np.random.choice([0, 1], size=n_agents) # 模拟是否结束 replay_buffer.add((observations, actions, rewards, next_observations, done)) maddpg_agent.update(replay_buffer) ``` ### 代码说明 - **Actor网络**:用于生成智能体的动作,输入为当前观测,输出为动作。 - **Critic网络**:用于评估所有智能体联合状态-动作的价值,输入为所有智能体的观测和动作。 - **MADDPGAgent类**:管理多个智能体的Actor和Critic网络,实现动作选择和网络更新。 - **ReplayBuffer类**:用于存储经验回放数据,提高训练稳定性。 - **训练过程**:模拟了简单的训练循环,包括观测、动作选择、奖励获取和经验回放。 该实现展示了MADDPG在合作导航任务中的基本训练流程,适用于多个智能体在共享环境中协同完成导航任务的场景。训练过程中,Critic网络利用全局信息进行更新,而Actor网络则根据Critic的反馈调整策略,从而实现高效的多智能体协作[^2]。 --- ###
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值