codeforces 593E

本文介绍了一种使用矩阵乘法解决地图上路径数量计算的问题。考虑到地图大小为 n*m (n*m ≤ 20),文章详细阐述了如何通过矩阵乘法进行状态转移,以高效地处理不同类型的询问,包括添加障碍、移除障碍及查询从起点到指定位置的路径数量。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题目大意

给你一个nm20的地图,然后有三种询问或限制q10000
第一种,在(xi,yi)位置上从ti时刻有障碍。
第二种,在(xi,yi)位置上从ti时刻取消障碍。
第三种,询问ti(1,1)(xi,yi)的方案数对109+7取余.

保证ti>ti1

解题思路

这道题,很明显可以用矩阵乘法来转移状态,对于每次的询问或限制,我只需将转移矩阵乘上titi1次,就可以得到时间ti的方案数.

参考代码

#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
#define fo(i,a,b) for(int i=a;i<=b;i++)
#define fd(i,a,b) for(int i=a;i>=b;i--)
#define maxn 25
#define mo 1000000007
#define mem(a,b) memset(a,b,sizeof(a))
using namespace std;

struct mat{
    int a[maxn][maxn];
}now;

bool bz[maxn][maxn];

int n,m,q,last;

const int fx[4][2]={{0,1},{1,0},{0,-1},{-1,0}};

int poi(int x,int y){
    return (x-1)*m+y;
}

mat mul(mat x,mat y){
    mat z;
    mem(z.a,0);
    fo(i,1,n*m)
        fo(j,1,n*m)
            fo(k,1,n*m)
                z.a[i][j]=(z.a[i][j]+x.a[i][k]*1ll*y.a[k][j]) % mo;
    return z;
}

mat pow(mat x,int y){
    mat ret;
    mem(ret.a,0);
    fo(i,1,n*m) ret.a[i][i]=1;
    while (y) {
        if (y % 2 ==1) ret=mul(ret,x);
        x=mul(x,x);
        y /= 2;
    }
    return ret;
}

int main(){
    scanf("%d%d%d",&n,&m,&q);
    last=1;
    fo(i,1,n*m) now.a[i][i]=1;
    fo(i,1,q) {
        int tp,x,y,t;
        scanf("%d%d%d%d",&tp,&x,&y,&t);
        mat tmp;
        mem(tmp.a,0);
        fo(j,1,n)
            fo(k,1,m) {
                fo(p,0,3) {
                    int xx=j+fx[p][0],yy=k+fx[p][1];
                    if (xx<=0 || yy<=0 || xx>n || yy>m) continue;
                    if (bz[j][k] || bz[xx][yy]) tmp.a[poi(j,k)][poi(xx,yy)]=0;
                    else tmp.a[poi(j,k)][poi(xx,yy)]=1;
                }
                if (bz[j][k]) tmp.a[poi(j,k)][poi(j,k)]=0;
                else tmp.a[poi(j,k)][poi(j,k)]=1;
            }
        now=mul(now,pow(tmp,t-last));
        if (tp==2) {
            bz[x][y]=1;
        }
        else if (tp==3) {
            bz[x][y]=0;
        }
        else {
            printf("%d\n",now.a[1][poi(x,y)]);
        }
        last=t;
    }
    return 0;
}
CH341A编程器是一款广泛应用的通用编程设备,尤其在电子工程和嵌入式系统开发领域中,它被用来烧录各种类型的微控制器、存储器和其他IC芯片。这款编程器的最新版本为1.3,它的一个显著特点是增加了对25Q256等32M芯片的支持。 25Q256是一种串行EEPROM(电可擦可编程只读存储器)芯片,通常用于存储程序代码、配置数据或其他非易失性信息。32M在这里指的是存储容量,即该芯片可以存储32兆位(Mbit)的数据,换算成字节数就是4MB。这种大容量的存储器在许多嵌入式系统中都有应用,例如汽车电子、工业控制、消费电子设备等。 CH341A编程器的1.3版更新,意味着它可以与更多的芯片型号兼容,特别是针对32M容量的芯片进行了优化,提高了编程效率和稳定性。26系列芯片通常指的是Microchip公司的25系列SPI(串行外围接口)EEPROM产品线,这些芯片广泛应用于各种需要小体积、低功耗和非易失性存储的应用场景。 全功能版的CH341A编程器不仅支持25Q256,还支持其他大容量芯片,这意味着它具有广泛的兼容性,能够满足不同项目的需求。这包括但不限于微控制器、EPROM、EEPROM、闪存、逻辑门电路等多种类型芯片的编程。 使用CH341A编程器进行编程操作时,首先需要将设备通过USB连接到计算机,然后安装相应的驱动程序和编程软件。在本例中,压缩包中的"CH341A_1.30"很可能是编程软件的安装程序。安装后,用户可以通过软件界面选择需要编程的芯片类型,加载待烧录的固件或数据,然后执行编程操作。编程过程中需要注意的是,确保正确设置芯片的电压、时钟频率等参数,以防止损坏芯片。 CH341A编程器1.3版是面向电子爱好者和专业工程师的一款实用工具,其强大的兼容性和易用性使其在众多编程器中脱颖而出。对于需要处理25Q256等32M芯片的项目,或者26系列芯片的编程工作,CH341A编程器是理想的选择。通过持续的软件更新和升级,它保持了与现代电子技术同步,确保用户能方便地对各种芯片进行编程和调试。
### Codeforces 887E Problem Solution and Discussion The problem **887E - The Great Game** on Codeforces involves a strategic game between two players who take turns to perform operations under specific rules. To tackle this challenge effectively, understanding both dynamic programming (DP) techniques and bitwise manipulation is crucial. #### Dynamic Programming Approach One effective method to approach this problem utilizes DP with memoization. By defining `dp[i][j]` as the optimal result when starting from state `(i,j)` where `i` represents current position and `j` indicates some status flag related to previous moves: ```cpp #include <bits/stdc++.h> using namespace std; const int MAXN = ...; // Define based on constraints int dp[MAXN][2]; // Function to calculate minimum steps using top-down DP int minSteps(int pos, bool prevMoveType) { if (pos >= N) return 0; if (dp[pos][prevMoveType] != -1) return dp[pos][prevMoveType]; int res = INT_MAX; // Try all possible next positions and update 'res' for (...) { /* Logic here */ } dp[pos][prevMoveType] = res; return res; } ``` This code snippet outlines how one might structure a solution involving recursive calls combined with caching results through an array named `dp`. #### Bitwise Operations Insight Another critical aspect lies within efficiently handling large integers via bitwise operators instead of arithmetic ones whenever applicable. This optimization can significantly reduce computation time especially given tight limits often found in competitive coding challenges like those hosted by platforms such as Codeforces[^1]. For detailed discussions about similar problems or more insights into solving strategies specifically tailored towards contest preparation, visiting forums dedicated to algorithmic contests would be beneficial. Websites associated directly with Codeforces offer rich resources including editorials written after each round which provide comprehensive explanations alongside alternative approaches taken by successful contestants during live events. --related questions-- 1. What are common pitfalls encountered while implementing dynamic programming solutions? 2. How does bit manipulation improve performance in algorithms dealing with integer values? 3. Can you recommend any online communities focused on discussing competitive programming tactics? 4. Are there particular patterns that frequently appear across different levels of difficulty within Codeforces contests?
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值