Understanding and Managing Transaction Logs--Transaction Log Logical Architecture

本文详细介绍了 SQL Server 2005 的事务日志机制,包括日志记录如何通过逻辑顺序号 (LSN) 进行标识及链接,以及在回滚操作中如何利用这些日志记录进行前滚或后滚处理。此外还讨论了不同类型操作的日志记录方式,例如逻辑操作和前后影像记录,并解释了如何通过日志记录来支持事务的完整恢复。

The SQL Server 2005 transaction log operates logically as if the transaction log is a string of log records. Each log record is identified by a log sequence number (LSN). Each new log record is written to the logical end of the log with an LSN that is higher than the LSN of the record before it.

Log records are stored in a serial sequence as they are created. Each log record contains the ID of the transaction that it belongs to. For each transaction, all log records associated with the transaction are individually linked in a chain using backward pointers that speed the rollback of the transaction.

Log records for data modifications record either the logical operation performed or they record the before and after images of the modified data. The before image is a copy of the data before the operation is performed; the after image is a copy of the data after the operation has been performed.

The steps to recover an operation depend on the type of log record:

  • Logical operation logged
    • To roll the logical operation forward, the operation is performed again.
    • To roll the logical operation back, the reverse logical operation is performed.
  • Before and after image logged
    • To roll the operation forward, the after image is applied.
    • To roll the operation back, the before image is applied.

Many types of operations are recorded in the transaction log. These operations include:

  • The start and end of each transaction.
  • Every data modification (insert, update, or delete). This includes changes by system stored procedures or data definition language (DDL) statements to any table, including system tables.
  • Every extent and page allocation or deallocation.
  • Creating or dropping a table or index.

Rollback operations are also logged. Each transaction reserves space on the transaction log to make sure that enough log space exists to support a rollback that is caused by either an explicit rollback statement or if an error is encountered. The amount of space reserved depends on the operations performed in the transaction, but generally is equal to the amount of space used to log each operation. This reserved space is freed when the transaction is completed.

The section of the log file from the first log record that must be present for a successful database-wide rollback to the last-written log record is called the active part of the log, or the active log. This is the section of the log required to do a full recovery of the database. No part of the active log can ever be truncated.

 

 

From  http://technet.microsoft.com/en-us/library/ms180892(SQL.90).aspx

基于数据驱动的 Koopman 算子的递归神经网络模型线性化,用于纳米定位系统的预测控制研究(Matlab代码实现)内容概要:本文围绕“基于数据驱动的Koopman算子的递归神经网络模型线性化”展开,旨在研究纳米定位系统的预测控制问题,并提供完整的Matlab代码实现。文章结合数据驱动方法与Koopman算子理论,利用递归神经网络(RNN)对非线性系统进行建模与线性化处理,从而提升纳米级定位系统的精度与动态响应性能。该方法通过提取系统隐含动态特征,构建近似线性模型,便于后续模型预测控制(MPC)的设计与优化,适用于高精度自动化控制场景。文中还展示了相关实验验证与仿真结果,证明了该方法的有效性和先进性。; 适合人群:具备一定控制理论基础和Matlab编程能力,从事精密控制、智能制造、自动化或相关领域研究的研究生、科研人员及工程技术人员。; 使用场景及目标:①应用于纳米级精密定位系统(如原子力显微镜、半导体制造设备)中的高性能控制设计;②为非线性系统建模与线性化提供一种结合深度学习与现代控制理论的新思路;③帮助读者掌握Koopman算子、RNN建模与模型预测控制的综合应用。; 阅读建议:建议读者结合提供的Matlab代码逐段理解算法实现流程,重点关注数据预处理、RNN结构设计、Koopman观测矩阵构建及MPC控制器集成等关键环节,并可通过更换实际系统数据进行迁移验证,深化对方法泛化能力的理解。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值