简单字串加密

本文介绍了一种简单的字符串加密方法,通过偏移字符位置实现加密与解密,适用于不需要高度安全性的场景,例如e-card网址参数的混淆。

简单字串加密

var encode:Object = new Object();
var decode:Object = new Object();
var a:Array = " abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ1234567890".split("");
// change this for different encoded results
var offset:int = 10;
for (var i:int = 0; i<a.length; i++){
 var index:int = (a.length - i - offset) % a.length;
 encode[a[i]] = a[index];
 decode[a[index]] = a[i];
}
function encodeString(str:String):String{
 return map(str, encode);
}
function decodeString(str:String):String{
 return map(str, decode);
}
function map(str:String, smode:Object):String{
 var n:String = "";
 for (var i:int = 0; i<str.length; i++){
  var char:String = str.charAt(i);
  var en:String = smode[char];
  if (en){
   n += en;
  }else{
   n += char;
  }
 }
 return n;
}
// test out the functions
var input:String = "This is a regular string";
trace(input);
var encoded:String = encodeString(input);
trace("encoded: ", encoded);
trace("decoded: ",decodeString(encoded));
/*
outputs:
This is a regular string
encoded:  gSRH1RH1Z1IVTFOZI1HGIRMT
decoded:  This is a regular string
*/

 

import com.actionsnippet.utils.SimpleCipher;
// same as offset above, but can be set at any time
// new encode and decode Objects will be calculated
SimpleCipher.offset = 1;
var input:String = "SimpleCipher encoding and decoding";
trace("input: ", input);
var encoded:String = SimpleCipher.encode(input);
trace("encoded: ", encoded);
trace("decoded: ", SimpleCipher.decode(encoded));
/*
outputs:
input:  SimpleCipher encoding and decoding
encoded:  RhlokdBhogdq0dmbnchmf0 mc0cdbnchmf
decoded:  SimpleCipher encoding and decoding
*/

 

The above demos an intentionally simple string encoding technique.

This is a technique I use if I need to encode strings but don't care if someone figures out what the string value actually is. For me, this is more common than needing hard/impossible to crack string encoding algorithms. A good example is an e-card... a url for an ecard could look like this:

www.birthdaycardthing.com/?name=joe&age=32

or it could look like this:

www.birthdaycardthing.com/?i=brx&x=5p

I wrapped this snippet up into a class and made a few minor tweaks. The class is called SimpleCipher it has two static methods and one static property...

内容概要:本文档介绍了基于3D FDTD(时域有限差分)方法在MATLAB平台上对微带线馈电的矩形天线进行仿真分析的技术方案,重点在于模拟超MATLAB基于3D FDTD的微带线馈矩形天线分析[用于模拟超宽带脉冲通过线馈矩形天线的传播,以计算微带结构的回波损耗参数]宽带脉冲信号通过天线结构的传播过程,并计算微带结构的回波损耗参数(S11),以评估天线的匹配性能和辐射特性。该方法通过建立三维电磁场模型,精确求解麦克斯韦方程组,适用于高频电磁仿真,能够有效分析天线在宽频带内的响应特性。文档还提及该资源属于一个涵盖多个科研方向的综合性MATLAB仿真资源包,涉及通信、信号处理、电力系统、机器学习等多个领域。; 适合人群:具备电磁场与微波技术基础知识,熟悉MATLAB编程及数值仿真的高校研究生、科研人员及通信工程领域技术人员。; 使用场景及目标:① 掌握3D FDTD方法在天线仿真中的具体实现流程;② 分析微带天线的回波损耗特性,优化天线设计参数以提升宽带匹配性能;③ 学习复杂电磁问题的数值建模与仿真技巧,拓展在射频与无线通信领域的研究能力。; 阅读建议:建议读者结合电磁理论基础,仔细理解FDTD算法的离散化过程和边界条件设置,运行并调试提供的MATLAB代码,通过调整天线几何尺寸和材料参数观察回波损耗曲线的变化,从而深入掌握仿真原理与工程应用方法。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值