word count
package cn.edu.swpu.scs;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.conf.Configured;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.*;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileSplit;
import org.apache.hadoop.mapreduce.lib.input.TextInputFormat;
import org.apache.hadoop.mapreduce.lib.output.TextOutputFormat;
import org.apache.hadoop.util.Tool;
import org.apache.hadoop.util.ToolRunner;
import java.io.IOException;
import java.util.Iterator;
import java.util.StringTokenizer;
public class WordCountWithCombine extends Configured implements Tool {
public static void main( String[] args ) throws Exception {
int res = ToolRunner.run(new WordCountWithCombine(), args);
System.exit(res);
}
public static String tempValue;
// 配置作业的主要参数和流程overwrite
public int run(String[] args) throws Exception {
////////////////////////////////////////////////////////////
// 创建作业,配置作业所需参数
Configuration conf = new Configuration();
// 创建作业
Job job = Job.getInstance(conf, "WordCountWithCombine");
String arg1 = args[0], arg2 = args[1];
System.out.println("args1=====" + arg1);
System.out.println("args2=====" + arg2);
tempValue = "this value is from run";
// 注入作业的主类
job.setJarByClass(WordCountWithCombine.class);
// 为作业注入Map和Reduce类
job.setMapperClass(Map.class);
//job.setCombinerClass(Combine.class);
//job.setReducerClass(Reduce.class);
//job.setNumReduceTasks(4);
// 指定输入类型为:文本格式文件;注入文本输入格式类
job.setInputFormatClass(TextInputFormat.class);
TextInputFormat.addInputPath(job, new Path(arg1));
//TextInputFormat.addInputPath(job, new Path("/mapred_input1"));
// 指定输出格式为:文本格式文件;注入文本输入格式类
job.setOutputFormatClass(TextOutputFormat.class);
// 指定Key为文本格式;注入文本类
job.setOutputKeyClass(Text.class);
// 执行Value为整型格式;注入整型类
job.setOutputValueClass(IntWritable.class);
// 指定作业的输出目录
TextOutputFormat.setOutputPath(job, new Path(arg2));
//TextOutputFormat.setOutputPath(job, new Path("/mapred_output1"));
////////////////////////////////////////////////////////////
// 作业的执行流程
// 执行MapReduce
boolean res = job.waitForCompletion(true);
if(res)
return 0;
else
return -1;
}
// Map过程
public static class Map extends Mapper<LongWritable, Text, Text, IntWritable> {
private final static IntWritable one = new IntWritable(1);
//private Text word = new Text();
private int num = 0;
@Override
public void map(LongWritable key, Text value, Context context)
throws IOException, InterruptedException {
String line = value.toString();
// System.out.println("file: " + ((FileSplit)context.getInputSplit()).getPath().toString());
// System.out.println("map " + String.valueOf(num) + ": " + key.toString() + "================" + line);
num ++;
// System.out.println(tempValue);
String[] words = line.split(" ");
for(String word : words){
context.write(new Text(word), one);
}
// StringTokenizer tokenizer = new StringTokenizer(line); //split line to words by space
// while (tokenizer.hasMoreTokens()) { //operate all word by loop
// word.set(tokenizer.nextToken());
// context.write(word, one); //write KV to context, word is key, word number is value
// }
}
}
// Combine过程
public static class Combine extends Reducer<Text, IntWritable, Text, IntWritable> {
private int num = 0;
@Override
public void reduce(Text key, Iterable<IntWritable> val, Context context) //mothod for each key,input format key(value1,value2,......)
throws IOException, InterruptedException {
int sum = 0;
Iterator<IntWritable> values = val.iterator();
while (values.hasNext()) {
sum += values.next().get(); //sum value(one word count)
}
//System.out.print("Combine " + String.valueOf(num) + ": " + key.toString() + "================" + Integer.toString(sum)+ "\n");
//num ++;
context.write(key, new IntWritable(sum)); //write one key and its count
}
}
// Reduce过程
public static class Reduce extends Reducer<Text, IntWritable, Text, IntWritable> {
private int num = 0;
@Override
public void reduce(Text key, Iterable<IntWritable> val, Context context) //mothod for each key,input format key(value1,value2,......)
throws IOException, InterruptedException {
int sum = 0;
Iterator<IntWritable> values = val.iterator();
while (values.hasNext()) {
sum += values.next().get(); //sum value(one word count)
}
// System.out.print("Reduce " + String.valueOf(num) + ": " + key.toString() + "================" + Integer.toString(sum)+ "\n");
//num++;
context.write(key, new IntWritable(sum)); //write one key and its count
}
}
}
1691

被折叠的 条评论
为什么被折叠?



