https://github.com/kuangliu/pytorch-groupnorm/blob/master/groupnorm.py
Group Normalization
import torch
import torch.nn as nn
class GroupNorm(nn.Module):
def __init__(self, num_features, num_groups=32, eps=1e-5):
super(GroupNorm, self).__init__()
self.weight = nn.Parameter(torch.ones(1,num_features,1,1))
self.bias = nn.Parameter(torch.zeros(1,num_features,1,1))
self.num_groups = num_groups
self.eps = eps
def forward(self, x):
N,C,H,W = x.size()
G = self.num_groups
assert C % G == 0
x = x.view(N,G,-1)
mean = x.mean(-1, keepdi
本文深入探讨了Group Normalization技术,一种用于深度学习模型的规范化方法,旨在解决Batch Normalization在小批量数据上的性能下降问题。通过将特征通道分组并独立标准化,Group Normalization能够在任何批次大小下保持稳定的表现,提高模型训练的效率和准确性。
订阅专栏 解锁全文
447

被折叠的 条评论
为什么被折叠?



