fails to startServer return code = -1

本文介绍了解决IBM WebSphere Application Server (WAS) v6.1.x在通过Rational Application Developer (RAD) v7.0.x启动时出现的ADMU7704E错误的方法。如果服务器被误配置为Windows服务,提供了详细的步骤来取消此配置,以便成功启动WAS服务器。
[b]转自:http://www-01.ibm.com/support/docview.wss?uid=swg21368020[/b]



[b]WAS v6.1.x fails to start with error ADMU7704E: Failed while trying to start the Windows Service[/b]

[b]Problem(Abstract) [/b]
Attempts to start IBM WebSphere Application Server (WAS) v6.1.x through Rational Application Developer (RAD) v7.0.x results in the error ADMU7704E: Failed while trying to start the Windows Service associated with server.

[b]Symptom[/b]
Complete error while starting WebSphere Application Server (WAS) v6.1.x:

ADMU7704E: Failed while trying to start the Windows Service associated with server: server1;
probable error executing WASService.exe: Starting Service: [service name]
Timed out waiting for service to respond to command, after 60 seconds.Failed to start service, or
timed out while waiting for start to complete. Check the logs for details.

[b]Resolving the problem[/b]
The server was configured as a Windows Service.
If this was unintentional, create a new server profile that does not run the application as a Windows Service.

Steps describing how to do this can be found in the Related URL section.

Alternatively, you can do the following:

Open Windows Services Control Panel ([b]Start > Settings > Control Panel > Administrative Tools > Services[/b]).


Look for the service name of WAS V6.1:

"IBM WebSphere Application Server V6.1 - [service_name]".


Open a command window and go to [RAD_Installation]\runtimes\base_v61\bin


Run the command:

WASService.exe -remove [service_name]

You should see a message "Successfully removed service".

Restart RAD and you should now be able to successfully start your WASv6.1.x server.
我的执行log是这样的 2025/11/04 14:07:46 INFO ================================================ 2025/11/04 14:07:46 INFO ----- Log Message Start ----- 2025/11/04 14:07:46 INFO 事前発注累積3DB形態変更 2025/11/04 14:07:46 INFO JOB ID = KTM04_050 2025/11/04 14:07:46 INFO BATCH ID = B_BX_KTM04_050 2025/11/04 14:07:46 INFO 実行 ID = 02 2025/11/04 14:07:46 INFO 業務日付 = 20250904 exitCd=-1 psql:/home/bx01/git/bx-db-server/program/svol01/bj/bin/sh/sql/bx_upd_BJ_T_ZEN_RUI3.sql:187: 2025-11-04 14:07:47.150437+09 INFO KTM B_BX_KTM04_050 02 処理開始 : 事前発注累積3DB形態変更 psql:/home/bx01/git/bx-db-server/program/svol01/bj/bin/sh/sql/bx_upd_BJ_T_ZEN_RUI3.sql:187: 2025-11-04 14:07:47.169039+09 INFO KTM B_BX_KTM04_050 02 形態変更11 検索 000001件 psql:/home/bx01/git/bx-db-server/program/svol01/bj/bin/sh/sql/bx_upd_BJ_T_ZEN_RUI3.sql:187: 2025-11-04 14:07:47.175917+09 INFO KTM B_BX_KTM04_050 02 形態変更対象 検索 1件 psql:/home/bx01/git/bx-db-server/program/svol01/bj/bin/sh/sql/bx_upd_BJ_T_ZEN_RUI3.sql:187: 2025-11-04 14:07:47.176274+09 INFO KTM B_BX_KTM04_050 02 事前発注累積3DB 更新 1件 psql:/home/bx01/git/bx-db-server/program/svol01/bj/bin/sh/sql/bx_upd_BJ_T_ZEN_RUI3.sql:187: 2025-11-04 14:07:47.17646+09 INFO KTM B_BX_KTM04_050 02 正常終了 : 事前発注累積3DB形態変更 psql:/home/bx01/git/bx-db-server/program/svol01/bj/bin/sh/sql/bx_upd_BJ_T_ZEN_RUI3.sql:187: 2025-11-04 14:07:47.176667+09 INFO KTM B_BX_KTM04_050 02 2025/11/04 14:07:47 INFO プログラムが正常終了しました。 2025/11/04 14:07:47 INFO BATCH ID = B_BX_KTM04_050 実行 ID = 02 結果 = -1 2025/11/04 14:07:47 INFO ----- Log Message End ----- 为什么结果会是-1而不是0
11-05
3.5 Edit the Script 1. Launch a text or code editor to create a new JavaScript file. 2. Review the script one function at a time. There are four functions that must be implemented in the script to support solicited ethernet communications. • onProfileLoad: Retrieves driver metadata • onValidateTag: Verifies the address and data type created in the configuration or any dynamic tags created in an OPC client are valid for the end device connected • onTagsRequest: Builds a packet of bytes to transmit to the device across the wire. • onData: Interprets the response from the device and updates tag values or indicates if the read or write operation was successful based on the data in the response. Note: onTagsRequest and onData can do much more then described in this example. These functions can be used to communicate with many kinds of protocols. For more information view the Profile Library Plugin Help documentation. 3. Build out the script one function at a time, use the following information to edit the script. Required function: onProfileLoad The onProfileLoad function is the first of these functions called by the driver. It retrieves driver metadata, identifying the interface between the script and the driver by specifying the version of Universal Device Driver with which it was created as well as the mode. For more information on the mode please view the Profile Library plug-in help. Note: The only supported version is 2.0. Any other value is rejected, leading to failure of all subsequent functions. Any exception thrown out of any of the “framework” functions is caught and results in failure of the current operation. An exception thrown out of: • onProfileLoad causes all subsequent operations to fail until corrected • onValidateTag causes the tag address to be treated as “invalid” • onTagsRequest causes the read or write operation on the current tag to fail • onData causes the read or write operation on the current tag to fail Below is the entire onProfileLoad function: function onProfileLoad() { return { version: “2.0”, mode: “Client” }; } Required function: onValidateTag The onValidateTag script function is to validate the address syntax of a tag and the data type, which is central to communicating with a device. In the case of a Modbus device, this function ensures that an address is a holding register in the supported range. If desired, add logic to this function to modify various tag fields, such as providing a valid default data type,r modifying an address format to enforce consistency among tag addresses, or assigning a bulkId to group specific tags together. For the onValidateTag function in this Modbus example, review the sections: www.ptc.com 6 ©2021-2023 PTC, Inc. All Rights Reserved. // Validate the address is a holding register in the supported range let tagAddress = info.tag.address; try { let numericAddress = parseInt(tagAddress, 10); if (numericAddress < MINREGISTERADDRESS || numericAddress > MAXREGISTERADDRESS || isNaN(numericAddress)) { info.tag.valid = false; return info.tag; } // If grouping tags into bulks, assign bulkId now. // Otherwise, the next bulkId is assigned by default. let bulkId = Math.floor((numericAddress - MINREGISTERADDRESS)/BULKREGISTERCOUNT); info.tag.bulkId = bulkId; log(`Modbus Ethernet onValidateTag: Bulk register count ${BULKREGISTERCOUNT}, address ${tagAddress}, bulkId ${info.tag.bulkId}`, VERBOSE_LOGGING); info.tag.valid = true; return info.tag; } catch (e) { // Use log to provide helpful information that can assist with error resolution log(`Unexpected error (onValidateTag): ${e.message}`, VERBOSE_LOGGING); info.tag.valid = false; return info.tag; } The code above offers a look at the JavaScript object info that the driver provides to the script writer. This object is meant to hold data to be exchanged between the script and the driver. It checks the address received from the driver (info.tag.address) and verifies it is in the expected range for a Modbus holding register as defined by constants MINREGISTERADDRESS, MAXREGISTERADDRESS. If it’s not in that range, fail the tag being added by setting the valid field of the tag to false: info.tag.valid = false. The script also defines the bulkId field for each tag. The register in the address along with the BULKREGISTERCOUNT constant facilitates assigning the bulkId that allows blocking together consecutive registers. Once the tags are blocked together, the Universal Device driver will then provide them in the tags object passed to the onTagsRequest and onData functions. // Provide a valid default data type based on register // Note: "Default" is an invalid data type let validDataTypes = {"3": "Word", "4": "Word"} if (info.tag.dataType === "Default") { let registerChar = info.tag.address.charAt(0); info.tag.dataType = validDataTypes[registerChar]; } /* www.ptc.com 7 ©2021-2023 PTC, Inc. All Rights Reserved. * The regular expression to compare address to. * ^4 starts with &#39;4&#39; * 0* find zero or more occurrences of &#39;0&#39; * 1$ ends with &#39;1&#39; */ let addressRegex = /^40*1$/; // Correct a "semi-correct" tag address (e.g. 401 or 400001 --> 40001) with regex if (addressRegex.test(info.tag.address)) { info.tag.address = "40001"; } The above code provides examples of logic to modify various tag fields. The first code block resets the data type if Default is initially selected. While Default is a Kepware server data type, it is an invalid return value for a tag data type (i.e., info.tag.dataType). As such, provide an appropriate and valid data type based on the register if the data type is set as Default. The second code block uses a regex to recognize semi-correct addresses and modify them accordingly. In the above implementation, this logic adjusts tag addresses with too few or too many zeros; for example, ‘401’ or ‘400001` is changed to40001. Below is the entire onValidateTag function: function onValidateTag(info) { // Provide a valid default data type based on register // Note: "Default" is an invalid data type let validDataTypes = {"3": "Long", "4": "DWord"} if (info.tag.dataType === "Default") { let registerChar = info.tag.address.charAt(0); info.tag.dataType = validDataTypes[registerChar]; } /* * The regular expression to compare address to. * ^4 starts with &#39;4&#39; * 0* find zero or more occurrences of &#39;0&#39; * 1$ ends with &#39;1&#39; */ let addressRegex = /^40*1$/; // Correct a "semi-correct" tag address (e.g. 401 or 400001 --> 40001) with regex if (addressRegex.test(info.tag.address)) { info.tag.address = "40001"; } // Validate the address is a holding register in the supported range let tagAddress = info.tag.address; try { www.ptc.com 8 ©2021-2023 PTC, Inc. All Rights Reserved. let numericAddress = parseInt(tagAddress, 10); if (numericAddress < MINREGISTERADDRESS || numericAddress > MAXREGISTERADDRESS || isNaN(numericAddress)) { info.tag.valid = false; return info.tag; } // If grouping tags into bulks, assign bulkId now. // Otherwise, the next bulkId is assigned by default. let bulkId = Math.floor((numericAddress - MINREGISTERADDRESS)/BULKREGISTERCOUNT); info.tag.bulkId = bulkId; log(`Modbus Ethernet onValidateTag: Bulk register count ${BULKREGISTERCOUNT}, address ${tagAddress}, bulkId ${info.tag.bulkId}`, VERBOSE_LOGGING); info.tag.valid = true; return info.tag; } catch (e) { // Use log to provide helpful information that can assist with error resolution log(`Unexpected error (onValidateTag): ${e.message}`, VERBOSE_LOGGING); info.tag.valid = false; return info.tag; } } Required function: onTagsRequest The onTagsRequest script function builds a packet of bytes that is sent to the target Modbus device. In the example implementation, the onTagsRequest function makes use of two helper functions to build action-specific packet: BuildReadMessage and BuildWriteMessage: function onTagsRequest(info) { let action = "Fail"; if (info.type === "Read") { let readData = BuildReadMessage(info.tags); // Evaluate if the data was successfully built if (readData.length === 12) { action = "Receive"; } return { action: action, data: readData }; } else if (info.type === "Write") { SENTWRITEDATA = BuildWriteMessage(info.tags); // Evaluate if the data was successfully built www.ptc.com 9 ©2021-2023 PTC, Inc. All Rights Reserved. if (SENTWRITEDATA.length === 12) { action = "Receive"; } return { action: action, data: SENTWRITEDATA }; } } Unlike the onTagsRequest function, these helper functions are not required; they help make the script more manageable. Let’s dive into these helper functions now. Helper Function: BuildReadMessage This function builds into the packet the function code for a Modbus read to ensure that the read is on the appropriate address(es). Most of the Modbus-specific pieces of this snippet are documented in code comments with the important parts called out. The Modbus protocol supports blocking / bulk read and write functionality. The Universal Device Driver supports blocking tags for reads but does not support blocking tags for writes. The tags parameter is an array containing at least one tag element. If, in onValidateTag, the script assigned the same bulkId to more than one tag, then those tags sharing a bulkId are included in the array when the request type is Read. function BuildReadMessage (tags) { // This should never happen, but it&#39;s best practice if (tags.length === 0) { throw "No tags were requested for read request."; } // Sort the Modbus registers low to high let registers = []; for(let i=0; i<tags.length; i++) { registers[i] = parseInt(tags[i].address, 10); } registers.sort (sortNumber); // Find the lowest register, and the number of registers required to read the whole block let first = registers[0]; let count = registers[registers.length - 1] - first + 1; // Get the zero-based register index to make the request first -= 40001; The code above checks the tags component of the JavaScript object info (i.e. info.tags). This component holds an array of tags. Each tag has an address used to build a request packet for a read. The beginning of this section of code ensures that the driver has given a tag to build a request packet. If the length of the tags array is zero, it exits the function because there&#39;s no reason for the driver to build a request packet if no tag – and in turn, no address – is provided. www.ptc.com 10 ©2021-2023 PTC, Inc. All Rights Reserved. // Update the transaction ID in the stateful transaction object if (TXID === undefined) { TXID = 0; } else { TXID++; } JavaScript is not a strongly typed language, making it possible to modify a variable&#39;s type or composition at runtime. This is something to take advantage of within the BuildReadMessage function. The above code snippet updates the value of a global variable TXID, which represents a transaction ID exchanged between the script and the driver. Use this global variable to keep track of the number of times it is building packets to transmit to the device. It&#39;s important to keep track of this because the transaction ID is a necessary part of the Modbus protocol, as seen in the next step. TXID is stateful between transactions because it is shared between the script and driver and maintains state across transactions. Every time this function is called, the transaction ID value maintains the state it was the last time it was changed at runtime. // Build the Modbus Ethernet data let data = // ----Transaction ID------|-Protocol--|---Length--|Server|-Fxn-| [hiByte(TXID), loByte(TXID), 0x00, 0x00, 0x00, 0x06, 0x00, 0x03, ------Starting Address-------|-------Register count--------| hiByte(first), loByte(first), hiByte(count), loByte(count)] The above shows the packet being constructed. It is an array of bytes to be sent to the Modbus device. The code comments the different parts of the packet that are defined in the Modbus protocol; for instance, the TXID described earlier is used in the protocol as the top two bytes. Note: Only bytes are currently supported for the data array. Below is the entire BuildReadMessage function: function BuildReadMessage (tags) { // This should never happen, but it&#39;s best practice if (tags.length === 0) { throw "No tags were requested for read request."; } // Sort the Modbus registers low to high let registers = []; for(let i=0; i<tags.length; i++) { registers[i] = parseInt(tags[i].address, 10); } registers.sort (sortNumber); // Find the lowest register, and the number of registers required to read the whole block let first = registers[0]; let count = registers[registers.length - 1] - first + 1; // Get the zero-based register index to make the request first -= 40001; www.ptc.com 11 ©2021-2023 PTC, Inc. All Rights Reserved. // Initialize or update the transaction ID in the stateful transaction object if (TXID === undefined) { TXID = 0; } else { TXID++; } // Build the Modbus Ethernet data let data = // ----Transaction ID------|-Protocol--|---Length--|Server|-Fxn-|------Starting Address--- - [hiByte(TXID), loByte(TXID), 0x00, 0x00, 0x00, 0x06, 0x00, 0x03, hiByte(first), ---|-------Register count--------| loByte(first), hiByte(count), loByte(count)] return data; } Helper Function: BuildWriteMessage The BuildWriteMessage function is similar to the BuildReadMessage function in that it assists with building an array of bytes to send the device. However, this function facilitates writing a value to, rather than reading a value from, a Modbus device. Note: Not all devices support writes. If the target device does support writes, the BuildWriteMessage function – in conjunction with the ParseWriteMessage function – provides an example of how to implement this functionality. // This should never happen but it&#39;s best practice if (tags.length === 0) { throw "No tags were requested for write request."; } // Sort the Modbus registers low to high let register = parseInt(tags[0].address, 10); register -= 40001; // Get the value to write which is located in the first // element in the tags[n].value object let value = parseInt(tags[0].value); The code above assigns the integer value of the tag address to the variable register. Additionally, is assigns the value of the first tag value to the variable value since KEPServerEX only allows single writes. // Build the Modbus Ethernet data let data = // ----Transaction ID-----|-Protocol--|---Length--|Server|-Fxn-| www.ptc.com 12 ©2021-2023 PTC, Inc. All Rights Reserved. [ hiByte(TXID), loByte(TXID), 0x00, 0x00, 0x00, 0x06, 0x00, 0x06, --------Starting Address----------|-------value to write--------| hiByte(register), loByte(register), hiByte(value), loByte(value) ]; return data; The above shows how to build up a write packet, which is very similar to building a read packet within the BuildReadMessage function. Required function: onData The onData script function parses the array of bytes received from a Modbus device. In the example implementation, as was the case with the onTagsRequest function, the onData function uses two helper functions to parse responses from a Modbus device: ParseReadMessage and ParseWriteMessage: function onData(info) { let action = ACTIONFAILURE; if (info.type === "Read") { let tags = ParseReadMessage(info.tags, info.data); // Evaluate if the data was successfully parsed from the packet if (tags[0].value != null || tags[0].quality != null) { action = ACTIONCOMPLETE; } return { action: action, tags: tags }; } else if (info.type === "Write") { action = ParseWriteMessage(info.data); return { action: action, tags: info.tags }; } } Helper Function: ParseReadMessage This function&#39;s purpose is to parse an incoming packet into a tag value to update the respective tag in the server. The incoming packet is passed to the script via the JavaScript object information as the returned byte array is contained in its data component (i.e. info.data). The function determines what information is important based on the protocol specification and extracts the value for the tag/address. This value is assigned to the value field of the tag (e.g. info.tags[0].value) and then returned from the function, which is how the tag is updated in the server. www.ptc.com 13 ©2021-2023 PTC, Inc. All Rights Reserved. function ParseReadMessage(tags, data) { // This should never happen but it&#39;s best practice if (tags.length === 0) { throw "No tags were requested for read request."; } log(`Modbus Ethernet ParseReadMessage: data ${JSON.stringify(data)}`, VERBOSE_LOGGING); // Convert the string addresses to integers (eg 40001) let registers = []; for(let i=0; i < tags.length; i++) { registers[i] = parseInt(tags[i].address, 10); } // Find the lowest numbered register - this is the starting address let startingAddress = Array.min (registers); // MBE Response values start here: let offset = 9; // Enough bytes? if (data.length < offset + 2 * registers.length) { // Iterate the registers and set the quality of each tag to bad for (let i = 0; i < registers.length; ++i) { // Log message only once for this response if (i === 0) { if (data.length === offset){ log(`Modbus Ethernet ParseReadMessage: Device returned an error code ${data[7]}, ${data[8]}`); } else { log(`Modbus Ethernet ParseReadMessage: Invalid response from device`); } } tags[i].quality = "Bad"; } } The code above performs error checking and gathering some information about the transaction. If the number of bytes in the response is not the number of bytes expected, then the script sets the quality of each tag to Bad. If the response appears to include an error code from the device, then the script provides that information in the message passed to the log function. Otherwise, the script logs a message indicating an invalid response from the device. The result is an updated tags component of the JavaScript object info to be shared with the driver and ultimately used to update the tag qualities in the server. // Iterate the registers and lookup the response value for each for (let i = 0; i < registers.length; ++i) { // Calculate the index of this register&#39;s value in the response buffer let index = registers[i] - startingAddress; // Extract it from the response buffer www.ptc.com 14 ©2021-2023 PTC, Inc. All Rights Reserved. let hi = data[2*index + offset]; let lo = data[2*index + offset + 1]; tags[i].value = (wordFromBytes (hi, lo)); } return tags; The code above extracts the value returned from the device and assigns it to the appropriate tag to be used to update the tag value in the server. The result is an updated tags component of the JavaScript object info to be shared with the driver and ultimately used to update the tag values in the server. Below is the entire ParseReadMessage function. function ParseReadMessage(tags, data) { // This should never happen but it&#39;s best practice if (tags.length === 0) { throw "No tags were requested for read request."; } log(`Modbus Ethernet ParseReadMessage: data ${JSON.stringify(data)}`, VERBOSE_LOGGING); // Convert the string addresses to integers (eg 40001) let registers = []; for(let i=0; i < tags.length; i++) { registers[i] = parseInt(tags[i].address, 10); } // Find the lowest numbered register - this is the starting address let startingAddress = Array.min (registers); // MBE Response values start here: let offset = 9; // Enough bytes? if (data.length < offset + 2 * registers.length) { // Iterate the registers and set the quality of each tag to bad for (let i = 0; i < registers.length; ++i) { // Log message only once for this response if (i === 0) { if (data.length === offset){ log(`Modbus Ethernet ParseReadMessage: Device returned an error code ${data[7]}, ${data[8]}`); } else { log(`Modbus Ethernet ParseReadMessage: Invalid response from device`); } } tags[i].quality = "Bad"; } www.ptc.com 15 ©2021-2023 PTC, Inc. All Rights Reserved. } else { // Iterate the registers and lookup the response value for each. // Assigning the quality of the tag is optional. If undefined, Good is assumed. for (let i = 0; i < registers.length; ++i) { // Calc the index of this register&#39;s value in the response buffer let index = registers[i] - startingAddress; // Extract the value from the response buffer let hi = data[2*index + offset]; let lo = data[2*index + offset + 1]; tags[i].value = (wordFromBytes (hi, lo)); } } return tags; } Helper Function: ParseWriteMessage The purpose of the ParseWriteMessage function is to determine if the write was successful. Most devices respond that the request was received and executed. In the case of Modbus, the response echoes the request, which makes it possible to compare the returned message with the sent message that was saved in the global variable SENTWRITEDATA. Below is the entire ParseWriteMessage function: function ParseWriteMessage(data) { // Modbus echoes a write request so if the data sent // does not match the data received, then the write fails SENTWRITEDATA.forEach((e1) => data.forEach((e2) => { if (e1 !== e2) { return "Fail"; } })); return "Complete"; } 以上分析总结出重点
09-30
3.5 Edit the Script 1. Launch a text or code editor to create a new JavaScript file. 2. Review the script one function at a time. There are four functions that must be implemented in the script to support solicited ethernet communications. • onProfileLoad: Retrieves driver metadata • onValidateTag: Verifies the address and data type created in the configuration or any dynamic tags created in an OPC client are valid for the end device connected • onTagsRequest: Builds a packet of bytes to transmit to the device across the wire. • onData: Interprets the response from the device and updates tag values or indicates if the read or write operation was successful based on the data in the response. Note: onTagsRequest and onData can do much more then described in this example. These functions can be used to communicate with many kinds of protocols. For more information view the Profile Library Plugin Help documentation. 3. Build out the script one function at a time, use the following information to edit the script. Required function: onProfileLoad The onProfileLoad function is the first of these functions called by the driver. It retrieves driver metadata, identifying the interface between the script and the driver by specifying the version of Universal Device Driver with which it was created as well as the mode. For more information on the mode please view the Profile Library plug-in help. Note: The only supported version is 2.0. Any other value is rejected, leading to failure of all subsequent functions. Any exception thrown out of any of the “framework” functions is caught and results in failure of the current operation. An exception thrown out of: • onProfileLoad causes all subsequent operations to fail until corrected • onValidateTag causes the tag address to be treated as “invalid” • onTagsRequest causes the read or write operation on the current tag to fail • onData causes the read or write operation on the current tag to fail Below is the entire onProfileLoad function: function onProfileLoad() { return { version: “2.0”, mode: “Client” }; } Required function: onValidateTag The onValidateTag script function is to validate the address syntax of a tag and the data type, which is central to communicating with a device. In the case of a Modbus device, this function ensures that an address is a holding register in the supported range. If desired, add logic to this function to modify various tag fields, such as providing a valid default data type,r modifying an address format to enforce consistency among tag addresses, or assigning a bulkId to group specific tags together. For the onValidateTag function in this Modbus example, review the sections: // Validate the address is a holding register in the supported range let tagAddress = info.tag.address; try { let numericAddress = parseInt(tagAddress, 10); if (numericAddress < MINREGISTERADDRESS || numericAddress > MAXREGISTERADDRESS || isNaN(numericAddress)) { info.tag.valid = false; return info.tag; } // If grouping tags into bulks, assign bulkId now. // Otherwise, the next bulkId is assigned by default. let bulkId = Math.floor((numericAddress - MINREGISTERADDRESS)/BULKREGISTERCOUNT); info.tag.bulkId = bulkId; log(`Modbus Ethernet onValidateTag: Bulk register count ${BULKREGISTERCOUNT}, address ${tagAddress}, bulkId ${info.tag.bulkId}`, VERBOSE_LOGGING); info.tag.valid = true; return info.tag; } catch (e) { // Use log to provide helpful information that can assist with error resolution log(`Unexpected error (onValidateTag): ${e.message}`, VERBOSE_LOGGING); info.tag.valid = false; return info.tag; } The code above offers a look at the JavaScript object info that the driver provides to the script writer. This object is meant to hold data to be exchanged between the script and the driver. It checks the address received from the driver (info.tag.address) and verifies it is in the expected range for a Modbus holding register as defined by constants MINREGISTERADDRESS, MAXREGISTERADDRESS. If it’s not in that range, fail the tag being added by setting the valid field of the tag to false: info.tag.valid = false. The script also defines the bulkId field for each tag. The register in the address along with the BULKREGISTERCOUNT constant facilitates assigning the bulkId that allows blocking together consecutive registers. Once the tags are blocked together, the Universal Device driver will then provide them in the tags object passed to the onTagsRequest and onData functions. // Provide a valid default data type based on register // Note: "Default" is an invalid data type let validDataTypes = {"3": "Word", "4": "Word"} if (info.tag.dataType === "Default") { let registerChar = info.tag.address.charAt(0); info.tag.dataType = validDataTypes[registerChar]; } /* * The regular expression to compare address to. * ^4 starts with &#39;4&#39; * 0* find zero or more occurrences of &#39;0&#39; * 1$ ends with &#39;1&#39; */ let addressRegex = /^40*1$/; // Correct a "semi-correct" tag address (e.g. 401 or 400001 --> 40001) with regex if (addressRegex.test(info.tag.address)) { info.tag.address = "40001"; } The above code provides examples of logic to modify various tag fields. The first code block resets the data type if Default is initially selected. While Default is a Kepware server data type, it is an invalid return value for a tag data type (i.e., info.tag.dataType). As such, provide an appropriate and valid data type based on the register if the data type is set as Default. The second code block uses a regex to recognize semi-correct addresses and modify them accordingly. In the above implementation, this logic adjusts tag addresses with too few or too many zeros; for example, ‘401’ or ‘400001` is changed to40001. Below is the entire onValidateTag function: function onValidateTag(info) { // Provide a valid default data type based on register // Note: "Default" is an invalid data type let validDataTypes = {"3": "Long", "4": "DWord"} if (info.tag.dataType === "Default") { let registerChar = info.tag.address.charAt(0); info.tag.dataType = validDataTypes[registerChar]; } /* * The regular expression to compare address to. * ^4 starts with &#39;4&#39; * 0* find zero or more occurrences of &#39;0&#39; * 1$ ends with &#39;1&#39; */ let addressRegex = /^40*1$/; // Correct a "semi-correct" tag address (e.g. 401 or 400001 --> 40001) with regex if (addressRegex.test(info.tag.address)) { info.tag.address = "40001"; } // Validate the address is a holding register in the supported range let tagAddress = info.tag.address; try {let numericAddress = parseInt(tagAddress, 10); if (numericAddress < MINREGISTERADDRESS || numericAddress > MAXREGISTERADDRESS || isNaN(numericAddress)) { info.tag.valid = false; return info.tag; } // If grouping tags into bulks, assign bulkId now. // Otherwise, the next bulkId is assigned by default. let bulkId = Math.floor((numericAddress - MINREGISTERADDRESS)/BULKREGISTERCOUNT); info.tag.bulkId = bulkId; log(`Modbus Ethernet onValidateTag: Bulk register count ${BULKREGISTERCOUNT}, address ${tagAddress}, bulkId ${info.tag.bulkId}`, VERBOSE_LOGGING); info.tag.valid = true; return info.tag; } catch (e) { // Use log to provide helpful information that can assist with error resolution log(`Unexpected error (onValidateTag): ${e.message}`, VERBOSE_LOGGING); info.tag.valid = false; return info.tag; } } Required function: onTagsRequest The onTagsRequest script function builds a packet of bytes that is sent to the target Modbus device. In the example implementation, the onTagsRequest function makes use of two helper functions to build action-specific packet: BuildReadMessage and BuildWriteMessage: function onTagsRequest(info) { let action = "Fail"; if (info.type === "Read") { let readData = BuildReadMessage(info.tags); // Evaluate if the data was successfully built if (readData.length === 12) { action = "Receive"; } return { action: action, data: readData }; } else if (info.type === "Write") { SENTWRITEDATA = BuildWriteMessage(info.tags); // Evaluate if the data was successfully built if (SENTWRITEDATA.length === 12) { action = "Receive"; } return { action: action, data: SENTWRITEDATA }; } } Unlike the onTagsRequest function, these helper functions are not required; they help make the script more manageable. Let’s dive into these helper functions now. Helper Function: BuildReadMessage This function builds into the packet the function code for a Modbus read to ensure that the read is on the appropriate address(es). Most of the Modbus-specific pieces of this snippet are documented in code comments with the important parts called out. The Modbus protocol supports blocking / bulk read and write functionality. The Universal Device Driver supports blocking tags for reads but does not support blocking tags for writes. The tags parameter is an array containing at least one tag element. If, in onValidateTag, the script assigned the same bulkId to more than one tag, then those tags sharing a bulkId are included in the array when the request type is Read. function BuildReadMessage (tags) { // This should never happen, but it&#39;s best practice if (tags.length === 0) { throw "No tags were requested for read request."; } // Sort the Modbus registers low to high let registers = []; for(let i=0; i<tags.length; i++) { registers[i] = parseInt(tags[i].address, 10); } registers.sort (sortNumber); // Find the lowest register, and the number of registers required to read the whole block let first = registers[0]; let count = registers[registers.length - 1] - first + 1; // Get the zero-based register index to make the request first -= 40001; The code above checks the tags component of the JavaScript object info (i.e. info.tags). This component holds an array of tags. Each tag has an address used to build a request packet for a read. The beginning of this section of code ensures that the driver has given a tag to build a request packet. If the length of the tags array is zero, it exits the function because there&#39;s no reason for the driver to build a request packet if no tag – and in turn, no address – is provided. // Update the transaction ID in the stateful transaction object if (TXID === undefined) { TXID = 0; } else { TXID++; } JavaScript is not a strongly typed language, making it possible to modify a variable&#39;s type or composition at runtime. This is something to take advantage of within the BuildReadMessage function. The above code snippet updates the value of a global variable TXID, which represents a transaction ID exchanged between the script and the driver. Use this global variable to keep track of the number of times it is building packets to transmit to the device. It&#39;s important to keep track of this because the transaction ID is a necessary part of the Modbus protocol, as seen in the next step. TXID is stateful between transactions because it is shared between the script and driver and maintains state across transactions. Every time this function is called, the transaction ID value maintains the state it was the last time it was changed at runtime. // Build the Modbus Ethernet data let data = // ----Transaction ID------|-Protocol--|---Length--|Server|-Fxn-| [hiByte(TXID), loByte(TXID), 0x00, 0x00, 0x00, 0x06, 0x00, 0x03, ------Starting Address-------|-------Register count--------| hiByte(first), loByte(first), hiByte(count), loByte(count)] The above shows the packet being constructed. It is an array of bytes to be sent to the Modbus device. The code comments the different parts of the packet that are defined in the Modbus protocol; for instance, the TXID described earlier is used in the protocol as the top two bytes. Note: Only bytes are currently supported for the data array. Below is the entire BuildReadMessage function: function BuildReadMessage (tags) { // This should never happen, but it&#39;s best practice if (tags.length === 0) { throw "No tags were requested for read request."; } // Sort the Modbus registers low to high let registers = []; for(let i=0; i<tags.length; i++) { registers[i] = parseInt(tags[i].address, 10); } registers.sort (sortNumber); // Find the lowest register, and the number of registers required to read the whole block let first = registers[0]; let count = registers[registers.length - 1] - first + 1; // Get the zero-based register index to make the request first -= 40001; www.ptc.com 11 ©2021-2023 PTC, Inc. All Rights Reserved. // Initialize or update the transaction ID in the stateful transaction object if (TXID === undefined) { TXID = 0; } else { TXID++; } // Build the Modbus Ethernet data let data = // ----Transaction ID------|-Protocol--|---Length--|Server|-Fxn-|------Starting Address--- - [hiByte(TXID), loByte(TXID), 0x00, 0x00, 0x00, 0x06, 0x00, 0x03, hiByte(first), ---|-------Register count--------| loByte(first), hiByte(count), loByte(count)] return data; } Helper Function: BuildWriteMessage The BuildWriteMessage function is similar to the BuildReadMessage function in that it assists with building an array of bytes to send the device. However, this function facilitates writing a value to, rather than reading a value from, a Modbus device. Note: Not all devices support writes. If the target device does support writes, the BuildWriteMessage function – in conjunction with the ParseWriteMessage function – provides an example of how to implement this functionality. // This should never happen but it&#39;s best practice if (tags.length === 0) { throw "No tags were requested for write request."; } // Sort the Modbus registers low to high let register = parseInt(tags[0].address, 10); register -= 40001; // Get the value to write which is located in the first // element in the tags[n].value object let value = parseInt(tags[0].value); The code above assigns the integer value of the tag address to the variable register. Additionally, is assigns the value of the first tag value to the variable value since KEPServerEX only allows single writes. // Build the Modbus Ethernet data let data = // ----Transaction ID-----|-Protocol--|---Length--|Server|-Fxn-| www.ptc.com 12 ©2021-2023 PTC, Inc. All Rights Reserved. [ hiByte(TXID), loByte(TXID), 0x00, 0x00, 0x00, 0x06, 0x00, 0x06, --------Starting Address----------|-------value to write--------| hiByte(register), loByte(register), hiByte(value), loByte(value) ]; return data; The above shows how to build up a write packet, which is very similar to building a read packet within the BuildReadMessage function. Required function: onData The onData script function parses the array of bytes received from a Modbus device. In the example implementation, as was the case with the onTagsRequest function, the onData function uses two helper functions to parse responses from a Modbus device: ParseReadMessage and ParseWriteMessage: function onData(info) { let action = ACTIONFAILURE; if (info.type === "Read") { let tags = ParseReadMessage(info.tags, info.data); // Evaluate if the data was successfully parsed from the packet if (tags[0].value != null || tags[0].quality != null) { action = ACTIONCOMPLETE; } return { action: action, tags: tags }; } else if (info.type === "Write") { action = ParseWriteMessage(info.data); return { action: action, tags: info.tags }; } } Helper Function: ParseReadMessage This function&#39;s purpose is to parse an incoming packet into a tag value to update the respective tag in the server. The incoming packet is passed to the script via the JavaScript object information as the returned byte array is contained in its data component (i.e. info.data). The function determines what information is important based on the protocol specification and extracts the value for the tag/address. This value is assigned to the value field of the tag (e.g. info.tags[0].value) and then returned from the function, which is how the tag is updated in the server. function ParseReadMessage(tags, data) { // This should never happen but it&#39;s best practice if (tags.length === 0) { throw "No tags were requested for read request."; } log(`Modbus Ethernet ParseReadMessage: data ${JSON.stringify(data)}`, VERBOSE_LOGGING); // Convert the string addresses to integers (eg 40001) let registers = []; for(let i=0; i < tags.length; i++) { registers[i] = parseInt(tags[i].address, 10); } // Find the lowest numbered register - this is the starting address let startingAddress = Array.min (registers); // MBE Response values start here: let offset = 9; // Enough bytes? if (data.length < offset + 2 * registers.length) { // Iterate the registers and set the quality of each tag to bad for (let i = 0; i < registers.length; ++i) { // Log message only once for this response if (i === 0) { if (data.length === offset){ log(`Modbus Ethernet ParseReadMessage: Device returned an error code ${data[7]}, ${data[8]}`); } else { log(`Modbus Ethernet ParseReadMessage: Invalid response from device`); } } tags[i].quality = "Bad"; } } The code above performs error checking and gathering some information about the transaction. If the number of bytes in the response is not the number of bytes expected, then the script sets the quality of each tag to Bad. If the response appears to include an error code from the device, then the script provides that information in the message passed to the log function. Otherwise, the script logs a message indicating an invalid response from the device. The result is an updated tags component of the JavaScript object info to be shared with the driver and ultimately used to update the tag qualities in the server. // Iterate the registers and lookup the response value for each for (let i = 0; i < registers.length; ++i) { // Calculate the index of this register&#39;s value in the response buffer let index = registers[i] - startingAddress; // Extract it from the response buffer www.ptc.com 14 ©2021-2023 PTC, Inc. All Rights Reserved. let hi = data[2*index + offset]; let lo = data[2*index + offset + 1]; tags[i].value = (wordFromBytes (hi, lo)); } return tags; The code above extracts the value returned from the device and assigns it to the appropriate tag to be used to update the tag value in the server. The result is an updated tags component of the JavaScript object info to be shared with the driver and ultimately used to update the tag values in the server. Below is the entire ParseReadMessage function. function ParseReadMessage(tags, data) { // This should never happen but it&#39;s best practice if (tags.length === 0) { throw "No tags were requested for read request."; } log(`Modbus Ethernet ParseReadMessage: data ${JSON.stringify(data)}`, VERBOSE_LOGGING); // Convert the string addresses to integers (eg 40001) let registers = []; for(let i=0; i < tags.length; i++) { registers[i] = parseInt(tags[i].address, 10); } // Find the lowest numbered register - this is the starting address let startingAddress = Array.min (registers); // MBE Response values start here: let offset = 9; // Enough bytes? if (data.length < offset + 2 * registers.length) { // Iterate the registers and set the quality of each tag to bad for (let i = 0; i < registers.length; ++i) { // Log message only once for this response if (i === 0) { if (data.length === offset){ log(`Modbus Ethernet ParseReadMessage: Device returned an error code ${data[7]}, ${data[8]}`); } else { log(`Modbus Ethernet ParseReadMessage: Invalid response from device`); } } tags[i].quality = "Bad"; } www.ptc.com 15 ©2021-2023 PTC, Inc. All Rights Reserved. } else { // Iterate the registers and lookup the response value for each. // Assigning the quality of the tag is optional. If undefined, Good is assumed. for (let i = 0; i < registers.length; ++i) { // Calc the index of this register&#39;s value in the response buffer let index = registers[i] - startingAddress; // Extract the value from the response buffer let hi = data[2*index + offset]; let lo = data[2*index + offset + 1]; tags[i].value = (wordFromBytes (hi, lo)); } } return tags; } Helper Function: ParseWriteMessage The purpose of the ParseWriteMessage function is to determine if the write was successful. Most devices respond that the request was received and executed. In the case of Modbus, the response echoes the request, which makes it possible to compare the returned message with the sent message that was saved in the global variable SENTWRITEDATA. Below is the entire ParseWriteMessage function: function ParseWriteMessage(data) { // Modbus echoes a write request so if the data sent // does not match the data received, then the write fails SENTWRITEDATA.forEach((e1) => data.forEach((e2) => { if (e1 !== e2) { return "Fail"; } })); return "Complete"; } 把3.5以上各个代码段,整理成一段完整的代码,这段代码必须有合理性,可直接复制出来能运行的代码。
09-30
/* vi: set sw=4 ts=4: */ /* * udhcp client * * Russ Dill <Russ.Dill@asu.edu> July 2001 * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */ #include <syslog.h> /* Override ENABLE_FEATURE_PIDFILE - ifupdown needs our pidfile to always exist */ #define WANT_PIDFILE 1 #include "common.h" #include "dhcpd.h" #include "dhcpc.h" #include "libmsglog.h" #include <netinet/if_ether.h> #include <linux/filter.h> #include <linux/if_packet.h> /* struct client_config_t client_config is in bb_common_bufsiz1 */ #if ENABLE_LONG_OPTS static const char udhcpc_longopts[] ALIGN1 = "clientid-none\0" No_argument "C" "vendorclass\0" Required_argument "V" "hostname\0" Required_argument "H" "fqdn\0" Required_argument "F" "interface\0" Required_argument "i" "now\0" No_argument "n" "pidfile\0" Required_argument "p" "quit\0" No_argument "q" "release\0" No_argument "R" "request\0" Required_argument "r" "script\0" Required_argument "s" "timeout\0" Required_argument "T" "version\0" No_argument "v" "retries\0" Required_argument "t" "tryagain\0" Required_argument "A" "syslog\0" No_argument "S" "request-option\0" Required_argument "O" "no-default-options\0" No_argument "o" "foreground\0" No_argument "f" "background\0" No_argument "b" "broadcast\0" No_argument "B" IF_FEATURE_UDHCPC_ARPING("arping\0" No_argument "a") IF_FEATURE_UDHCP_PORT("client-port\0" Required_argument "P") "keep-request" No_argument "k" ; #endif /* Must match getopt32 option string order */ enum { OPT_C = 1 << 0, OPT_V = 1 << 1, OPT_H = 1 << 2, OPT_h = 1 << 3, OPT_F = 1 << 4, OPT_i = 1 << 5, OPT_n = 1 << 6, OPT_p = 1 << 7, OPT_q = 1 << 8, OPT_R = 1 << 9, OPT_r = 1 << 10, OPT_s = 1 << 11, OPT_T = 1 << 12, OPT_t = 1 << 13, OPT_S = 1 << 14, OPT_A = 1 << 15, OPT_O = 1 << 16, OPT_o = 1 << 17, OPT_x = 1 << 18, OPT_f = 1 << 19, OPT_B = 1 << 20, /* The rest has variable bit positions, need to be clever */ OPTBIT_B = 20, USE_FOR_MMU( OPTBIT_b,) IF_FEATURE_UDHCPC_ARPING(OPTBIT_a,) IF_FEATURE_UDHCP_PORT( OPTBIT_P,) #if defined CONFIG_UDHCP_DEBUG && CONFIG_UDHCP_DEBUG >= 1 OPTBIT_v, #endif OPTBIT_k, USE_FOR_MMU( OPT_b = 1 << OPTBIT_b,) IF_FEATURE_UDHCPC_ARPING(OPT_a = 1 << OPTBIT_a,) IF_FEATURE_UDHCP_PORT( OPT_P = 1 << OPTBIT_P,) #if defined CONFIG_UDHCP_DEBUG && CONFIG_UDHCP_DEBUG >= 1 OPT_v = 1 << OPTBIT_v, #endif OPT_k = 1 << OPTBIT_k, }; /*** Script execution code ***/ /* get a rough idea of how long an option will be (rounding up...) */ static const uint8_t len_of_option_as_string[] = { [OPTION_IP ] = sizeof("255.255.255.255 "), [OPTION_IP_PAIR ] = sizeof("255.255.255.255 ") * 2, [OPTION_ROUTES ] = sizeof("255.255.255.255 ") * 2, [OPTION_STATIC_ROUTES ] = sizeof("255.255.255.255/32 255.255.255.255 "), [OPTION_6RD ] = sizeof("32 128 FFFF:FFFF:FFFF:FFFF:FFFF:FFFF:FFFF:FFFF 255.255.255.255 "), [OPTION_STRING ] = 1, [OPTION_STRING_HOST ] = 1, #if ENABLE_FEATURE_UDHCP_RFC3397 [OPTION_DNS_STRING ] = 1, /* unused */ /* Hmmm, this severely overestimates size if SIP_SERVERS option * is in domain name form: N-byte option in binary form * mallocs ~16*N bytes. But it is freed almost at once. */ [OPTION_SIP_SERVERS ] = sizeof("255.255.255.255 "), #endif // [OPTION_BOOLEAN ] = sizeof("yes "), [OPTION_U8 ] = sizeof("255 "), [OPTION_U16 ] = sizeof("65535 "), // [OPTION_S16 ] = sizeof("-32768 "), [OPTION_U32 ] = sizeof("4294967295 "), [OPTION_S32 ] = sizeof("-2147483684 "), }; /* note: ip is a pointer to an IP in network order, possibly misaliged */ static int sprint_nip(char *dest, const char *pre, const uint8_t *ip) { return sprintf(dest, "%s%u.%u.%u.%u", pre, ip[0], ip[1], ip[2], ip[3]); } static int sprint_nip6(char *dest, const char *pre, const uint8_t *ip) { int len = 0; int off; uint16_t word; len += sprintf(dest, "%s", pre); for (off = 0; off < 16; off += 2) { move_from_unaligned16(word, &ip[off]); len += sprintf(dest+len, "%s%04X", off ? ":" : "", htons(word)); } return len; } /* really simple implementation, just count the bits */ static int mton(uint32_t mask) { int i = 0; mask = ntohl(mask); /* 111110000-like bit pattern */ while (mask) { i++; mask <<= 1; } return i; } /* Check if a given label represents a valid DNS label * Return pointer to the first character after the label upon success, * NULL otherwise. * See RFC1035, 2.3.1 */ /* We don&#39;t need to be particularly anal. For example, allowing _, hyphen * at the end, or leading and trailing dots would be ok, since it * can&#39;t be used for attacks. (Leading hyphen can be, if someone uses * cmd "$hostname" * in the script: then hostname may be treated as an option) */ static const char *valid_domain_label(const char *label) { unsigned char ch; unsigned pos = 0; for (;;) { ch = *label; if ((ch|0x20) < &#39;a&#39; || (ch|0x20) > &#39;z&#39;) { if (pos == 0) { /* label must begin with letter */ return NULL; } if (ch < &#39;0&#39; || ch > &#39;9&#39;) { if (ch == &#39;\0&#39; || ch == &#39;.&#39;) return label; /* DNS allows only &#39;-&#39;, but we are more permissive */ if (ch != &#39;-&#39; && ch != &#39;_&#39;) return NULL; } } label++; pos++; //Do we want this? //if (pos > 63) /* NS_MAXLABEL; labels must be 63 chars or less */ // return NULL; } } /* Check if a given name represents a valid DNS name */ /* See RFC1035, 2.3.1 */ static int good_hostname(const char *name) { //const char *start = name; for (;;) { name = valid_domain_label(name); if (!name) return 0; if (!name[0]) return 1; //Do we want this? //return ((name - start) < 1025); /* NS_MAXDNAME */ name++; } } /* Create "opt_name=opt_value" string */ static NOINLINE char *xmalloc_optname_optval(uint8_t *option, const struct dhcp_optflag *optflag, const char *opt_name) { unsigned upper_length; int len, type, optlen; char *dest, *ret; /* option points to OPT_DATA, need to go back and get OPT_LEN */ len = option[OPT_LEN - OPT_DATA]; type = optflag->flags & OPTION_TYPE_MASK; optlen = dhcp_option_lengths[type]; upper_length = len_of_option_as_string[type] * ((unsigned)len / (unsigned)optlen); dest = ret = xmalloc(upper_length + strlen(opt_name) + 2); dest += sprintf(ret, "%s=", opt_name); while (len >= optlen) { switch (type) { case OPTION_IP_PAIR: dest += sprint_nip(dest, "", option); *dest++ = &#39;/&#39;; dest += sprint_nip(dest, "", option + 4); break; case OPTION_ROUTES: { unsigned masklen; uint8_t *ipaddr = option; uint8_t *gateway = option + 4; //routesʹ����Ȼ���룬����ip��λ�Ƿ�Ϊ0��ȡ8/16/24/32���� masklen = (ipaddr[0] != 0) + ((ipaddr[0] != 0) && (ipaddr[1] != 0)) + ((ipaddr[0] != 0) && (ipaddr[1] != 0) && (ipaddr[2] != 0)) + ((ipaddr[0] != 0) && (ipaddr[1] != 0) && (ipaddr[2] != 0) && (ipaddr[3] != 0)); masklen *= 8; dest += sprint_nip(dest, "", ipaddr); dest += sprintf(dest, "/%u ", masklen); dest += sprint_nip(dest, "", gateway); break; } case OPTION_IP: dest += sprint_nip(dest, "", option); break; // case OPTION_BOOLEAN: // dest += sprintf(dest, *option ? "yes" : "no"); // break; case OPTION_U8: dest += sprintf(dest, "%u", *option); break; // case OPTION_S16: case OPTION_U16: { uint16_t val_u16; move_from_unaligned16(val_u16, option); dest += sprintf(dest, "%u", ntohs(val_u16)); break; } case OPTION_S32: case OPTION_U32: { uint32_t val_u32; move_from_unaligned32(val_u32, option); dest += sprintf(dest, type == OPTION_U32 ? "%lu" : "%ld", (unsigned long) ntohl(val_u32)); break; } case OPTION_STRING: case OPTION_STRING_HOST: memcpy(dest, option, len); dest[len] = &#39;\0&#39;; if (type == OPTION_STRING_HOST && !good_hostname(dest)) safe_strncpy(dest, "bad", len); return ret; /* Short circuit this case */ case OPTION_STATIC_ROUTES: { /* Option binary format: * mask [one byte, 0..32] * ip [big endian, 0..4 bytes depending on mask] * router [big endian, 4 bytes] * may be repeated * * We convert it to a string "IP/MASK ROUTER IP2/MASK2 ROUTER2" */ const char *pfx = ""; while (len >= 1 + 4) { /* mask + 0-byte ip + router */ uint32_t nip; uint8_t *p; unsigned mask; int bytes; mask = *option++; if (mask > 32) break; len--; nip = 0; p = (void*) &nip; bytes = (mask + 7) / 8; /* 0 -> 0, 1..8 -> 1, 9..16 -> 2 etc */ while (--bytes >= 0) { *p++ = *option++; len--; } if (len < 4) break; /* print ip/mask */ dest += sprint_nip(dest, pfx, (void*) &nip); pfx = " "; dest += sprintf(dest, "/%u ", mask); /* print router */ dest += sprint_nip(dest, "", option); option += 4; len -= 4; } return ret; } case OPTION_6RD: { /* Option binary format: * 0 1 2 3 * 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ * | OPTION_6RD | option-length | IPv4MaskLen | 6rdPrefixLen | * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ * | | * | 6rdPrefix | * | (16 octets) | * | | * | | * | | * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ * | 6rdBRIPv4Address(es) | * . . * . . * . . * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ * * We convert it to a string "IPv4MaskLen 6rdPrefixLen 6rdPrefix 6rdBRIPv4Address" */ /* Sanity check: ensure that our length is at least 22 bytes, that * IPv4MaskLen is <= 32, 6rdPrefixLen <= 128 and that the sum of * (32 - IPv4MaskLen) + 6rdPrefixLen is less than or equal to 128. * If any of these requirements is not fulfilled, return with empty * value. */ if ((len >= 22) && (*option <= 32) && (*(option+1) <= 128) && (((32 - *option) + *(option+1)) <= 128)) { /* IPv4MaskLen */ dest += sprintf(dest, "%u ", *option++); len--; /* 6rdPrefixLen */ dest += sprintf(dest, "%u ", *option++); len--; /* 6rdPrefix */ dest += sprint_nip6(dest, "", option); option += 16; len -= 16; /* 6rdBRIPv4Addresses */ while (len >= 4) { dest += sprint_nip(dest, " ", option); option += 4; len -= 4; /* the code to determine the option size fails to work with * lengths that are not a multiple of the minimum length, * adding all advertised 6rdBRIPv4Addresses here would * overflow the destination buffer, therefore skip the rest * for now */ break; } } return ret; } #if ENABLE_FEATURE_UDHCP_RFC3397 case OPTION_DNS_STRING: /* unpack option into dest; use ret for prefix (i.e., "optname=") */ dest = dname_dec(option, len, ret); if (dest) { free(ret); return dest; } /* error. return "optname=" string */ return ret; case OPTION_SIP_SERVERS: /* Option binary format: * type: byte * type=0: domain names, dns-compressed * type=1: IP addrs */ option++; len--; if (option[-1] == 0) { dest = dname_dec(option, len, ret); if (dest) { free(ret); return dest; } } else if (option[-1] == 1) { const char *pfx = ""; while (1) { len -= 4; if (len < 0) break; dest += sprint_nip(dest, pfx, option); pfx = " "; option += 4; } } return ret; #endif } /* switch */ option += optlen; len -= optlen; // TODO: it can be a list only if (optflag->flags & OPTION_LIST). // Should we bail out/warn if we see multi-ip option which is // not allowed to be such (for example, DHCP_BROADCAST)? - if (len <= 0 /* || !(optflag->flags & OPTION_LIST) */) break; *dest++ = &#39; &#39;; *dest = &#39;\0&#39;; } return ret; } /* put all the parameters into the environment */ static char **fill_envp(struct dhcp_packet *packet) { int envc; int i; char **envp, **curr; const char *opt_name; uint8_t *temp; uint8_t overload = 0; #define BITMAP unsigned #define BBITS (sizeof(BITMAP) * 8) #define BMASK(i) (1 << (i & (sizeof(BITMAP) * 8 - 1))) #define FOUND_OPTS(i) (found_opts[(unsigned)i / BBITS]) BITMAP found_opts[256 / BBITS]; memset(found_opts, 0, sizeof(found_opts)); /* We need 6 elements for: * "interface=IFACE" * "ip=N.N.N.N" from packet->yiaddr * "siaddr=IP" from packet->siaddr_nip (unless 0) * "boot_file=FILE" from packet->file (unless overloaded) * "sname=SERVER_HOSTNAME" from packet->sname (unless overloaded) * terminating NULL */ envc = 6; /* +1 element for each option, +2 for subnet option: */ if (packet) { /* note: do not search for "pad" (0) and "end" (255) options */ //TODO: change logic to scan packet _once_ for (i = 1; i < 255; i++) { temp = udhcp_get_option(packet, i); if (temp) { if (i == DHCP_OPTION_OVERLOAD) overload = *temp; else if (i == DHCP_SUBNET) envc++; /* for mton */ envc++; /*if (i != DHCP_MESSAGE_TYPE)*/ FOUND_OPTS(i) |= BMASK(i); } } } curr = envp = xzalloc(sizeof(envp[0]) * envc); *curr = xasprintf("interface=%s", client_config.interface); putenv(*curr++); if (!packet) return envp; *curr = xmalloc(sizeof("ip=255.255.255.255")); sprint_nip(*curr, "ip=", (uint8_t *) &packet->yiaddr); putenv(*curr++); opt_name = dhcp_option_strings; i = 0; while (*opt_name) { uint8_t code = dhcp_optflags[i].code; BITMAP *found_ptr = &FOUND_OPTS(code); BITMAP found_mask = BMASK(code); if (!(*found_ptr & found_mask)) goto next; *found_ptr &= ~found_mask; /* leave only unknown options */ temp = udhcp_get_option(packet, code); *curr = xmalloc_optname_optval(temp, &dhcp_optflags[i], opt_name); putenv(*curr++); if (code == DHCP_SUBNET) { /* Subnet option: make things like "$ip/$mask" possible */ uint32_t subnet; move_from_unaligned32(subnet, temp); *curr = xasprintf("mask=%d", mton(subnet)); putenv(*curr++); } next: opt_name += strlen(opt_name) + 1; i++; } if (packet->siaddr_nip) { *curr = xmalloc(sizeof("siaddr=255.255.255.255")); sprint_nip(*curr, "siaddr=", (uint8_t *) &packet->siaddr_nip); putenv(*curr++); } if (!(overload & FILE_FIELD) && packet->file[0]) { /* watch out for invalid packets */ *curr = xasprintf("boot_file=%."DHCP_PKT_FILE_LEN_STR"s", packet->file); putenv(*curr++); } if (!(overload & SNAME_FIELD) && packet->sname[0]) { /* watch out for invalid packets */ *curr = xasprintf("sname=%."DHCP_PKT_SNAME_LEN_STR"s", packet->sname); putenv(*curr++); } /* Handle unknown options */ for (i = 0; i < 256;) { BITMAP bitmap = FOUND_OPTS(i); if (!bitmap) { i += BBITS; continue; } if (bitmap & BMASK(i)) { unsigned len, ofs; temp = udhcp_get_option(packet, i); /* udhcp_get_option returns ptr to data portion, * need to go back to get len */ len = temp[-OPT_DATA + OPT_LEN]; *curr = xmalloc(sizeof("optNNN=") + 1 + len*2); ofs = sprintf(*curr, "opt%u=", i); bin2hex(*curr + ofs, (void*) temp, len)[0] = &#39;\0&#39;; putenv(*curr++); } i++; } return envp; } /* Call a script with a par file and env vars */ static void udhcp_run_script(struct dhcp_packet *packet, const char *name, const char *action) { char **envp, **curr; char *argv[4]; if (client_config.script == NULL) return; envp = fill_envp(packet); /* call script */ log1("Executing %s %s", client_config.script, name); argv[0] = (char*) client_config.script; argv[1] = (char*) name; argv[2] = action; argv[3] = NULL; spawn_and_wait(argv); for (curr = envp; *curr; curr++) { log2(" %s", *curr); bb_unsetenv_and_free(*curr); } free(envp); } /*** Sending/receiving packets ***/ static ALWAYS_INLINE uint32_t random_xid(void) { return rand(); } /* Initialize the packet with the proper defaults */ static void init_packet(struct dhcp_packet *packet, char type) { uint16_t secs; /* Fill in: op, htype, hlen, cookie fields; message type option: */ udhcp_init_header(packet, type); packet->xid = random_xid(); client_config.last_secs = monotonic_sec(); if (client_config.first_secs == 0) client_config.first_secs = client_config.last_secs; secs = client_config.last_secs - client_config.first_secs; packet->secs = htons(secs); memcpy(packet->chaddr, client_config.client_mac, 6); if (client_config.clientid) udhcp_add_binary_option(packet, client_config.clientid); } static void add_client_options(struct dhcp_packet *packet, int flag) { uint8_t c; int i, end, len; udhcp_add_simple_option(packet, DHCP_MAX_SIZE, htons(IP_UDP_DHCP_SIZE)); /* Add a "param req" option with the list of options we&#39;d like to have * from stubborn DHCP servers. Pull the data from the struct in common.c. * No bounds checking because it goes towards the head of the packet. */ end = udhcp_end_option(packet->options); len = 0; for (i = 0; (c = dhcp_optflags[i].code) != 0; i++) { if (( (dhcp_optflags[i].flags & OPTION_REQ) && !client_config.no_default_options ) || (client_config.opt_mask[c >> 3] & (1 << (c & 7))) ) { packet->options[end + OPT_DATA + len] = c; len++; } } if (len) { packet->options[end + OPT_CODE] = DHCP_PARAM_REQ; packet->options[end + OPT_LEN] = len; packet->options[end + OPT_DATA + len] = DHCP_END; } if (client_config.vendorclass) udhcp_add_binary_option(packet, client_config.vendorclass); if (client_config.hostname) udhcp_add_binary_option(packet, client_config.hostname); if (client_config.fqdn) udhcp_add_binary_option(packet, client_config.fqdn); /* Request broadcast replies, even though we have no IP addr, modified by wangfuyu, 20140910 */ if (option_mask32 & OPT_B) packet->flags |= htons(flag); /* Request broadcast replies if we have no IP addr */ /* if ((option_mask32 & OPT_B) && packet->ciaddr == 0) packet->flags |= htons(BROADCAST_FLAG); */ /* Add -x options if any */ { struct option_set *curr = client_config.options; while (curr) { udhcp_add_binary_option(packet, curr->data); curr = curr->next; } // if (client_config.sname) // strncpy((char*)packet->sname, client_config.sname, sizeof(packet->sname) - 1); // if (client_config.boot_file) // strncpy((char*)packet->file, client_config.boot_file, sizeof(packet->file) - 1); } } /* RFC 2131 * 4.4.4 Use of broadcast and unicast * * The DHCP client broadcasts DHCPDISCOVER, DHCPREQUEST and DHCPINFORM * messages, unless the client knows the address of a DHCP server. * The client unicasts DHCPRELEASE messages to the server. Because * the client is declining the use of the IP address supplied by the server, * the client broadcasts DHCPDECLINE messages. * * When the DHCP client knows the address of a DHCP server, in either * INIT or REBOOTING state, the client may use that address * in the DHCPDISCOVER or DHCPREQUEST rather than the IP broadcast address. * The client may also use unicast to send DHCPINFORM messages * to a known DHCP server. If the client receives no response to DHCP * messages sent to the IP address of a known DHCP server, the DHCP * client reverts to using the IP broadcast address. */ static int raw_bcast_from_client_config_ifindex(struct dhcp_packet *packet) { return udhcp_send_raw_packet(packet, /*src*/ INADDR_ANY, CLIENT_PORT, /*dst*/ INADDR_BROADCAST, SERVER_PORT, MAC_BCAST_ADDR, client_config.ifindex); } /* Broadcast a DHCP discover packet to the network, with an optionally requested IP */ /* NOINLINE: limit stack usage in caller */ static NOINLINE int send_discover(uint32_t xid, uint32_t requested, int flag) { struct dhcp_packet packet; static int msgs = 0; /* Fill in: op, htype, hlen, cookie, chaddr fields, * random xid field (we override it below), * client-id option (unless -C), message type option: */ init_packet(&packet, DHCPDISCOVER); packet.xid = xid; if (requested) { udhcp_add_simple_option(&packet, DHCP_REQUESTED_IP, requested); } /* Add options: maxsize, * optionally: hostname, fqdn, vendorclass, * "param req" option according to -O, options specified with -x */ add_client_options(&packet, flag); if (msgs++ < 3) msglog(LOG_PRIO_INFO, DHCPC_MODU_NAME, "Sending discover..."); return raw_bcast_from_client_config_ifindex(&packet); } /* Broadcast a DHCP request message */ /* RFC 2131 3.1 paragraph 3: * "The client _broadcasts_ a DHCPREQUEST message..." */ /* NOINLINE: limit stack usage in caller */ static NOINLINE int send_select(uint32_t xid, uint32_t server, uint32_t requested) { struct dhcp_packet packet; struct in_addr addr; /* * RFC 2131 4.3.2 DHCPREQUEST message * ... * If the DHCPREQUEST message contains a &#39;server identifier&#39; * option, the message is in response to a DHCPOFFER message. * Otherwise, the message is a request to verify or extend an * existing lease. If the client uses a &#39;client identifier&#39; * in a DHCPREQUEST message, it MUST use that same &#39;client identifier&#39; * in all subsequent messages. If the client included a list * of requested parameters in a DHCPDISCOVER message, it MUST * include that list in all subsequent messages. */ /* Fill in: op, htype, hlen, cookie, chaddr fields, * random xid field (we override it below), * client-id option (unless -C), message type option: */ init_packet(&packet, DHCPREQUEST); packet.xid = xid; udhcp_add_simple_option(&packet, DHCP_REQUESTED_IP, requested); udhcp_add_simple_option(&packet, DHCP_SERVER_ID, server); /* Add options: maxsize, * optionally: hostname, fqdn, vendorclass, * "param req" option according to -O, and options specified with -x */ add_client_options(&packet, BROADCAST_FLAG); addr.s_addr = requested; msglog(LOG_PRIO_INFO, DHCPC_MODU_NAME, "Sending select for %s...", inet_ntoa(addr)); return raw_bcast_from_client_config_ifindex(&packet); } /* Unicast or broadcast a DHCP renew message */ /* NOINLINE: limit stack usage in caller */ static NOINLINE int send_renew(uint32_t xid, uint32_t server, uint32_t ciaddr) { struct dhcp_packet packet; /* * RFC 2131 4.3.2 DHCPREQUEST message * ... * DHCPREQUEST generated during RENEWING state: * * &#39;server identifier&#39; MUST NOT be filled in, &#39;requested IP address&#39; * option MUST NOT be filled in, &#39;ciaddr&#39; MUST be filled in with * client&#39;s IP address. In this situation, the client is completely * configured, and is trying to extend its lease. This message will * be unicast, so no relay agents will be involved in its * transmission. Because &#39;giaddr&#39; is therefore not filled in, the * DHCP server will trust the value in &#39;ciaddr&#39;, and use it when * replying to the client. */ /* Fill in: op, htype, hlen, cookie, chaddr fields, * random xid field (we override it below), * client-id option (unless -C), message type option: */ init_packet(&packet, DHCPREQUEST); packet.xid = xid; packet.ciaddr = ciaddr; /* Add options: maxsize, * optionally: hostname, fqdn, vendorclass, * "param req" option according to -O, and options specified with -x */ add_client_options(&packet, BROADCAST_FLAG); msglog(LOG_PRIO_INFO, DHCPC_MODU_NAME, "Sending renew..."); if (server) return udhcp_send_kernel_packet(&packet, ciaddr, CLIENT_PORT, server, SERVER_PORT); return raw_bcast_from_client_config_ifindex(&packet); } #if 1 //#if ENABLE_FEATURE_UDHCPC_ARPING /* Broadcast a DHCP decline message */ /* NOINLINE: limit stack usage in caller */ static NOINLINE int send_decline(uint32_t xid, uint32_t server, uint32_t requested) { struct dhcp_packet packet; /* Fill in: op, htype, hlen, cookie, chaddr, random xid fields, * client-id option (unless -C), message type option: */ init_packet(&packet, DHCPDECLINE); /* RFC 2131 says DHCPDECLINE&#39;s xid is randomly selected by client, * but in case the server is buggy and wants DHCPDECLINE&#39;s xid * to match the xid which started entire handshake, * we use the same xid we used in initial DHCPDISCOVER: */ packet.xid = xid; /* DHCPDECLINE uses "requested ip", not ciaddr, to store offered IP */ udhcp_add_simple_option(&packet, DHCP_REQUESTED_IP, requested); udhcp_add_simple_option(&packet, DHCP_SERVER_ID, server); msglog(LOG_PRIO_INFO, DHCPC_MODU_NAME, "Sending decline..."); return raw_bcast_from_client_config_ifindex(&packet); } #endif /* Unicast a DHCP release message */ static int send_release(uint32_t server, uint32_t ciaddr) { struct dhcp_packet packet; /* Fill in: op, htype, hlen, cookie, chaddr, random xid fields, * client-id option (unless -C), message type option: */ init_packet(&packet, DHCPRELEASE); /* DHCPRELEASE uses ciaddr, not "requested ip", to store IP being released */ packet.ciaddr = ciaddr; udhcp_add_simple_option(&packet, DHCP_SERVER_ID, server); msglog(LOG_PRIO_INFO, DHCPC_MODU_NAME, "Sending release..."); return udhcp_send_kernel_packet(&packet, ciaddr, CLIENT_PORT, server, SERVER_PORT); } /* Returns -1 on errors that are fatal for the socket, -2 for those that aren&#39;t */ /* NOINLINE: limit stack usage in caller */ static NOINLINE int udhcp_recv_raw_packet(struct dhcp_packet *dhcp_pkt, int fd) { int bytes; int nocsum = 0; struct ip_udp_dhcp_packet packet; uint16_t check; unsigned char cmsgbuf[CMSG_LEN(sizeof(struct tpacket_auxdata))]; struct iovec iov = { .iov_base = &packet, .iov_len = sizeof(packet), }; struct msghdr msg = { .msg_iov = &iov, .msg_iovlen = 1, .msg_control = cmsgbuf, .msg_controllen = sizeof(cmsgbuf), }; struct cmsghdr *cmsg; memset(&packet, 0, sizeof(packet)); do { bytes = recvmsg(fd, &msg, 0); } while (bytes < 0 && errno == EINTR); if (bytes < 0) { log1("Packet read error, ignoring"); /* NB: possible down interface, etc. Caller should pause. */ return bytes; /* returns -1 */ } for (cmsg = CMSG_FIRSTHDR(&msg); cmsg; cmsg = CMSG_NXTHDR(&msg, cmsg)) { if (cmsg->cmsg_level == SOL_PACKET && cmsg->cmsg_type == PACKET_AUXDATA) { struct tpacket_auxdata *aux = (void *)CMSG_DATA(cmsg); nocsum = aux->tp_status & TP_STATUS_CSUMNOTREADY; } } if (bytes < (int) (sizeof(packet.ip) + sizeof(packet.udp))) { log1("Packet is too short, ignoring"); return -2; } if (bytes < ntohs(packet.ip.tot_len)) { /* packet is bigger than sizeof(packet), we did partial read */ log1("Oversized packet, ignoring"); return -2; } /* ignore any extra garbage bytes */ bytes = ntohs(packet.ip.tot_len); /* make sure its the right packet for us, and that it passes sanity checks */ if (packet.ip.protocol != IPPROTO_UDP || packet.ip.version != IPVERSION || packet.ip.ihl != (sizeof(packet.ip) >> 2) || packet.udp.dest != htons(CLIENT_PORT) /* || bytes > (int) sizeof(packet) - can&#39;t happen */ || ntohs(packet.udp.len) != (uint16_t)(bytes - sizeof(packet.ip)) ) { log1("Unrelated/bogus packet, ignoring"); return -2; } /* verify IP checksum */ check = packet.ip.check; packet.ip.check = 0; if (check != udhcp_checksum(&packet.ip, sizeof(packet.ip))) { log1("Bad IP header checksum, ignoring"); return -2; } /* verify UDP checksum. IP header has to be modified for this */ memset(&packet.ip, 0, offsetof(struct iphdr, protocol)); /* ip.xx fields which are not memset: protocol, check, saddr, daddr */ packet.ip.tot_len = packet.udp.len; /* yes, this is needed */ check = packet.udp.check; packet.udp.check = 0; if (!nocsum && check && check != udhcp_checksum(&packet, bytes)) { log1("Packet with bad UDP checksum received, ignoring"); return -2; } memcpy(dhcp_pkt, &packet.data, bytes - (sizeof(packet.ip) + sizeof(packet.udp))); if (dhcp_pkt->cookie != htonl(DHCP_MAGIC)) { msglog(LOG_PRIO_INFO, DHCPC_MODU_NAME, "Packet with bad magic, ignoring"); return -2; } log1("Got valid DHCP packet"); udhcp_dump_packet(dhcp_pkt); return bytes - (sizeof(packet.ip) + sizeof(packet.udp)); } /*** Main ***/ static int sockfd = -1; #define LISTEN_NONE 0 #define LISTEN_KERNEL 1 #define LISTEN_RAW 2 static smallint listen_mode; /* initial state: (re)start DHCP negotiation */ #define INIT_SELECTING 0 /* discover was sent, DHCPOFFER reply received */ #define REQUESTING 1 /* select/renew was sent, DHCPACK reply received */ #define BOUND 2 /* half of lease passed, want to renew it by sending unicast renew requests */ #define RENEWING 3 /* renew requests were not answered, lease is almost over, send broadcast renew */ #define REBINDING 4 /* manually requested renew (SIGUSR1) */ #define RENEW_REQUESTED 5 /* release, possibly manually requested (SIGUSR2) */ #define RELEASED 6 static smallint state; static int udhcp_raw_socket(int ifindex) { int fd; struct sockaddr_ll sock; int val; /* * Comment: * * I&#39;ve selected not to see LL header, so BPF doesn&#39;t see it, too. * The filter may also pass non-IP and non-ARP packets, but we do * a more complete check when receiving the message in userspace. * * and filter shamelessly stolen from: * * http://www.flamewarmaster.de/software/dhcpclient/ * * There are a few other interesting ideas on that page (look under * "Motivation"). Use of netlink events is most interesting. Think * of various network servers listening for events and reconfiguring. * That would obsolete sending HUP signals and/or make use of restarts. * * Copyright: 2006, 2007 Stefan Rompf <sux@loplof.de>. * License: GPL v2. * * TODO: make conditional? */ static const struct sock_filter filter_instr[] = { /* load 9th byte (protocol) */ BPF_STMT(BPF_LD|BPF_B|BPF_ABS, 9), /* jump to L1 if it is IPPROTO_UDP, else to L4 */ BPF_JUMP(BPF_JMP|BPF_JEQ|BPF_K, IPPROTO_UDP, 0, 6), /* L1: load halfword from offset 6 (flags and frag offset) */ BPF_STMT(BPF_LD|BPF_H|BPF_ABS, 6), /* jump to L4 if any bits in frag offset field are set, else to L2 */ BPF_JUMP(BPF_JMP|BPF_JSET|BPF_K, 0x1fff, 4, 0), /* L2: skip IP header (load index reg with header len) */ BPF_STMT(BPF_LDX|BPF_B|BPF_MSH, 0), /* load udp destination port from halfword[header_len + 2] */ BPF_STMT(BPF_LD|BPF_H|BPF_IND, 2), /* jump to L3 if udp dport is CLIENT_PORT, else to L4 */ BPF_JUMP(BPF_JMP|BPF_JEQ|BPF_K, 68, 0, 1), /* L3: accept packet */ BPF_STMT(BPF_RET|BPF_K, 0xffffffff), /* L4: discard packet */ BPF_STMT(BPF_RET|BPF_K, 0), }; static const struct sock_fprog filter_prog = { .len = sizeof(filter_instr) / sizeof(filter_instr[0]), /* casting const away: */ .filter = (struct sock_filter *) filter_instr, }; log1("Opening raw socket on ifindex %d", ifindex); //log2? fd = xsocket(PF_PACKET, SOCK_DGRAM, htons(ETH_P_IP)); log1("Got raw socket fd %d", fd); //log2? sock.sll_family = AF_PACKET; sock.sll_protocol = htons(ETH_P_IP); sock.sll_ifindex = ifindex; xbind(fd, (struct sockaddr *) &sock, sizeof(sock)); if (CLIENT_PORT == 68) { /* Use only if standard port is in use */ /* Ignoring error (kernel may lack support for this) */ if (setsockopt(fd, SOL_SOCKET, SO_ATTACH_FILTER, &filter_prog, sizeof(filter_prog)) >= 0) log1("Attached filter to raw socket fd %d", fd); // log? } val = 1; if (setsockopt(fd, SOL_PACKET, PACKET_AUXDATA, &val, sizeof(val)) < 0) { if (errno != ENOPROTOOPT) log1("Failed to set auxiliary packet data for socket fd %d", fd); } log1("Created raw socket"); return fd; } static void change_listen_mode(int new_mode) { log1("Entering listen mode: %s", new_mode != LISTEN_NONE ? (new_mode == LISTEN_KERNEL ? "kernel" : "raw") : "none" ); listen_mode = new_mode; if (sockfd >= 0) { close(sockfd); sockfd = -1; } if (new_mode == LISTEN_KERNEL) sockfd = udhcp_listen_socket(/*INADDR_ANY,*/ CLIENT_PORT, client_config.interface); else if (new_mode != LISTEN_NONE) sockfd = udhcp_raw_socket(client_config.ifindex); /* else LISTEN_NONE: sockfd stays closed */ } /* Called only on SIGUSR1 */ static void perform_renew(void) { msglog(LOG_PRIO_INFO, DHCPC_MODU_NAME, "Performing a DHCP renew"); switch (state) { case BOUND: change_listen_mode(LISTEN_KERNEL); case RENEWING: case REBINDING: state = RENEW_REQUESTED; break; case RENEW_REQUESTED: /* impatient are we? fine, square 1 */ case REQUESTING: case RELEASED: change_listen_mode(LISTEN_RAW); state = INIT_SELECTING; break; case INIT_SELECTING: break; } } static void perform_release(uint32_t requested_ip, uint32_t server_addr) { char buffer[sizeof("255.255.255.255")]; struct in_addr temp_addr; /* send release packet */ if (state == BOUND || state == RENEWING || state == REBINDING) { temp_addr.s_addr = server_addr; strcpy(buffer, inet_ntoa(temp_addr)); temp_addr.s_addr = requested_ip; msglog(LOG_PRIO_NOTICE, DHCPC_MODU_NAME, "Unicasting a release of %s to %s", inet_ntoa(temp_addr), buffer); send_release(server_addr, requested_ip); /* unicast */ udhcp_run_script(NULL, "deconfig", "release"); } msglog(LOG_PRIO_NOTICE, DHCPC_MODU_NAME, "Entering released state"); change_listen_mode(LISTEN_NONE); state = RELEASED; } static uint8_t* alloc_dhcp_option(int code, const char *str, int extra) { uint8_t *storage; int len = strnlen(str, 255); storage = xzalloc(len + extra + OPT_DATA); storage[OPT_CODE] = code; storage[OPT_LEN] = len + extra; memcpy(storage + extra + OPT_DATA, str, len); return storage; } #if BB_MMU static void client_background(void) { bb_daemonize(0); logmode &= ~LOGMODE_STDIO; /* rewrite pidfile, as our pid is different now */ write_pidfile(client_config.pidfile); } #endif //usage:#if defined CONFIG_UDHCP_DEBUG && CONFIG_UDHCP_DEBUG >= 1 //usage:# define IF_UDHCP_VERBOSE(...) __VA_ARGS__ //usage:#else //usage:# define IF_UDHCP_VERBOSE(...) //usage:#endif //usage:#define udhcpc_trivial_usage //usage: "[-fbnq"IF_UDHCP_VERBOSE("v")"oCRB] [-i IFACE] [-r IP] [-s PROG] [-p PIDFILE]\n" //usage: " [-H HOSTNAME] [-V VENDOR] [-x OPT:VAL]... [-O OPT]..." IF_FEATURE_UDHCP_PORT(" [-P N]") "[-k]" //usage:#define udhcpc_full_usage "\n" //usage: IF_LONG_OPTS( //usage: "\n -i,--interface IFACE Interface to use (default eth0)" //usage: "\n -p,--pidfile FILE Create pidfile" //usage: "\n -s,--script PROG Run PROG at DHCP events (default "CONFIG_UDHCPC_DEFAULT_SCRIPT")" //usage: "\n -B,--broadcast Request broadcast replies" //usage: "\n -t,--retries N Send up to N discover packets" //usage: "\n -T,--timeout N Pause between packets (default 3 seconds)" //usage: "\n -A,--tryagain N Wait N seconds after failure (default 20)" //usage: "\n -f,--foreground Run in foreground" //usage: USE_FOR_MMU( //usage: "\n -b,--background Background if lease is not obtained" //usage: ) //usage: "\n -n,--now Exit if lease is not obtained" //usage: "\n -q,--quit Exit after obtaining lease" //usage: "\n -R,--release Release IP on exit" //usage: "\n -S,--syslog Log to syslog too" //usage: IF_FEATURE_UDHCP_PORT( //usage: "\n -P,--client-port N Use port N (default 68)" //usage: ) //usage: IF_FEATURE_UDHCPC_ARPING( //usage: "\n -a,--arping Use arping to validate offered address" //usage: ) //usage: "\n -O,--request-option OPT Request option OPT from server (cumulative)" //usage: "\n -o,--no-default-options Don&#39;t request any options (unless -O is given)" //usage: "\n -r,--request IP Request this IP address" //usage: "\n -x OPT:VAL Include option OPT in sent packets (cumulative)" //usage: "\n Examples of string, numeric, and hex byte opts:" //usage: "\n -x hostname:bbox - option 12" //usage: "\n -x lease:3600 - option 51 (lease time)" //usage: "\n -x 0x3d:0100BEEFC0FFEE - option 61 (client id)" //usage: "\n -F,--fqdn NAME Ask server to update DNS mapping for NAME" //usage: "\n -H,-h,--hostname NAME Send NAME as client hostname (default none)" //usage: "\n -V,--vendorclass VENDOR Vendor identifier (default &#39;udhcp VERSION&#39;)" //usage: "\n -C,--clientid-none Don&#39;t send MAC as client identifier" //usage: IF_UDHCP_VERBOSE( //usage: "\n -v Verbose" //usage: ) //usage: "\n -k,--keep-request Keep request same ip even received NAK" //usage: ) //usage: IF_NOT_LONG_OPTS( //usage: "\n -i IFACE Interface to use (default eth0)" //usage: "\n -p FILE Create pidfile" //usage: "\n -s PROG Run PROG at DHCP events (default "CONFIG_UDHCPC_DEFAULT_SCRIPT")" //usage: "\n -B Request broadcast replies" //usage: "\n -t N Send up to N discover packets" //usage: "\n -T N Pause between packets (default 3 seconds)" //usage: "\n -A N Wait N seconds (default 20) after failure" //usage: "\n -f Run in foreground" //usage: USE_FOR_MMU( //usage: "\n -b Background if lease is not obtained" //usage: ) //usage: "\n -n Exit if lease is not obtained" //usage: "\n -q Exit after obtaining lease" //usage: "\n -R Release IP on exit" //usage: "\n -S Log to syslog too" //usage: IF_FEATURE_UDHCP_PORT( //usage: "\n -P N Use port N (default 68)" //usage: ) //usage: IF_FEATURE_UDHCPC_ARPING( //usage: "\n -a Use arping to validate offered address" //usage: ) //usage: "\n -O OPT Request option OPT from server (cumulative)" //usage: "\n -o Don&#39;t request any options (unless -O is given)" //usage: "\n -r IP Request this IP address" //usage: "\n -x OPT:VAL Include option OPT in sent packets (cumulative)" //usage: "\n Examples of string, numeric, and hex byte opts:" //usage: "\n -x hostname:bbox - option 12" //usage: "\n -x lease:3600 - option 51 (lease time)" //usage: "\n -x 0x3d:0100BEEFC0FFEE - option 61 (client id)" //usage: "\n -F NAME Ask server to update DNS mapping for NAME" //usage: "\n -H,-h NAME Send NAME as client hostname (default none)" //usage: "\n -V VENDOR Vendor identifier (default &#39;udhcp VERSION&#39;)" //usage: "\n -C Don&#39;t send MAC as client identifier" //usage: IF_UDHCP_VERBOSE( //usage: "\n -v Verbose" //usage: ) //usage: "\n -k,--keep-request Keep request same ip even received NAK" //usage: ) //usage: "\nSignals:" //usage: "\n USR1 Renew current lease" //usage: "\n USR2 Release current lease" int udhcpc_main(int argc, char **argv) MAIN_EXTERNALLY_VISIBLE; int udhcpc_main(int argc UNUSED_PARAM, char **argv) { uint8_t *temp, *message; const char *str_V, *str_h, *str_F, *str_r; IF_FEATURE_UDHCP_PORT(char *str_P;) void *clientid_mac_ptr; llist_t *list_O = NULL; llist_t *list_x = NULL; int tryagain_timeout = 20; int discover_retries = 5; int timeout_circle[5] = {2, 2, 4, 2, 2}; int discover_timeout = 3; int invert_bit = 3; int timeout_increment = 30; int retrans_renew = 0; int retrans_rebind = 0; uint32_t server_addr = server_addr; /* for compiler */ uint32_t requested_ip = 0; uint32_t xid = 0; uint32_t lease_seconds = 0; /* can be given as 32-bit quantity */ int packet_num; int timeout; /* must be signed */ unsigned already_waited_sec; unsigned opt; int max_fd; int retval; struct timeval tv; struct dhcp_packet packet; fd_set rfds; int flag = 0; int lease_notify = 0; char buf[512] = {0}; int keep_request = 0; int decline_times = 0; /* Default options */ IF_FEATURE_UDHCP_PORT(SERVER_PORT = 67;) IF_FEATURE_UDHCP_PORT(CLIENT_PORT = 68;) client_config.interface = "eth0"; client_config.script = CONFIG_UDHCPC_DEFAULT_SCRIPT; str_V = "udhcp "BB_VER; /* Parse command line */ /* O,x: list; -T,-t,-A take numeric param */ opt_complementary = "O::x::T+:t+:A+" #if defined CONFIG_UDHCP_DEBUG && CONFIG_UDHCP_DEBUG >= 1 ":vv" #endif ; IF_LONG_OPTS(applet_long_options = udhcpc_longopts;) opt = getopt32(argv, "CV:H:h:F:i:np:qRr:s:T:t:SA:O:ox:fB" USE_FOR_MMU("b") IF_FEATURE_UDHCPC_ARPING("a") IF_FEATURE_UDHCP_PORT("P:") #if defined CONFIG_UDHCP_DEBUG && CONFIG_UDHCP_DEBUG >= 1 "v" #endif "k" , &str_V, &str_h, &str_h, &str_F , &client_config.interface, &client_config.pidfile, &str_r /* i,p */ , &client_config.script /* s */ , &discover_timeout, &discover_retries, &tryagain_timeout /* T,t,A */ , &list_O , &list_x IF_FEATURE_UDHCP_PORT(, &str_P) #if defined CONFIG_UDHCP_DEBUG && CONFIG_UDHCP_DEBUG >= 1 , &dhcp_verbose #endif ); if (opt & (OPT_h|OPT_H)) client_config.hostname = alloc_dhcp_option(DHCP_HOST_NAME, str_h, 0); if (opt & OPT_F) { /* FQDN option format: [0x51][len][flags][0][0]<fqdn> */ client_config.fqdn = alloc_dhcp_option(DHCP_FQDN, str_F, 3); /* Flag bits: 0000NEOS * S: 1 = Client requests server to update A RR in DNS as well as PTR * O: 1 = Server indicates to client that DNS has been updated regardless * E: 1 = Name is in DNS format, i.e. <4>host<6>domain<3>com<0>, * not "host.domain.com". Format 0 is obsolete. * N: 1 = Client requests server to not update DNS (S must be 0 then) * Two [0] bytes which follow are deprecated and must be 0. */ client_config.fqdn[OPT_DATA + 0] = 0x1; /*client_config.fqdn[OPT_DATA + 1] = 0; - xzalloc did it */ /*client_config.fqdn[OPT_DATA + 2] = 0; */ } if (opt & OPT_r) requested_ip = inet_addr(str_r); #if ENABLE_FEATURE_UDHCP_PORT if (opt & OPT_P) { CLIENT_PORT = xatou16(str_P); SERVER_PORT = CLIENT_PORT - 1; } #endif if (opt & OPT_o) client_config.no_default_options = 1; while (list_O) { char *optstr = llist_pop(&list_O); unsigned n = bb_strtou(optstr, NULL, 0); if (errno || n > 254) { n = udhcp_option_idx(optstr); n = dhcp_optflags[n].code; } client_config.opt_mask[n >> 3] |= 1 << (n & 7); } while (list_x) { char *optstr = llist_pop(&list_x); char *colon = strchr(optstr, &#39;:&#39;); if (colon) *colon = &#39; &#39;; /* now it looks similar to udhcpd&#39;s config file line: * "optname optval", using the common routine: */ udhcp_str2optset(optstr, &client_config.options); } if (udhcp_read_interface(client_config.interface, &client_config.ifindex, NULL, client_config.client_mac) ) { return 1; } clientid_mac_ptr = NULL; if (!(opt & OPT_C) && !udhcp_find_option(client_config.options, DHCP_CLIENT_ID)) { /* not suppressed and not set, set the default client ID */ client_config.clientid = alloc_dhcp_option(DHCP_CLIENT_ID, "", 7); client_config.clientid[OPT_DATA] = 1; /* type: ethernet */ clientid_mac_ptr = client_config.clientid + OPT_DATA+1; memcpy(clientid_mac_ptr, client_config.client_mac, 6); } if (str_V[0] != &#39;\0&#39;) client_config.vendorclass = alloc_dhcp_option(DHCP_VENDOR, str_V, 0); #if !BB_MMU /* on NOMMU reexec (i.e., background) early */ if (!(opt & OPT_f)) { bb_daemonize_or_rexec(0 /* flags */, argv); logmode = LOGMODE_NONE; } #endif if (opt & OPT_S) { openlog(applet_name, LOG_PID, LOG_DAEMON); logmode |= LOGMODE_SYSLOG; } if (opt & OPT_k) { keep_request = 1; } /* Make sure fd 0,1,2 are open */ bb_sanitize_stdio(); /* Equivalent of doing a fflush after every \n */ setlinebuf(stdout); /* Create pidfile */ write_pidfile(client_config.pidfile); /* Goes to stdout (unless NOMMU) and possibly syslog */ msglog(LOG_PRIO_INFO, DHCPC_MODU_NAME, "%s (v"BB_VER") started", applet_name); /* Set up the signal pipe */ udhcp_sp_setup(); /* We want random_xid to be random... */ srand(monotonic_us()); state = INIT_SELECTING; udhcp_run_script(NULL, "deconfig", "init"); change_listen_mode(LISTEN_RAW); packet_num = 0; timeout = 0; already_waited_sec = 0; discover_retries = 5; /* Main event loop. select() waits on signal pipe and possibly * on sockfd. * "continue" statements in code below jump to the top of the loop. */ for (;;) { /* silence "uninitialized!" warning */ unsigned timestamp_before_wait = timestamp_before_wait; /* When running on a bridge, the ifindex may have changed (e.g. if * member interfaces were added/removed or if the status of the * bridge changed). * Workaround: refresh it here before processing the next packet */ udhcp_read_interface(client_config.interface, &client_config.ifindex, NULL, client_config.client_mac); //bb_error_msg("sockfd:%d, listen_mode:%d", sockfd, listen_mode); /* Was opening raw or udp socket here * if (listen_mode != LISTEN_NONE && sockfd < 0), * but on fast network renew responses return faster * than we open sockets. Thus this code is moved * to change_listen_mode(). Thus we open listen socket * BEFORE we send renew request (see "case BOUND:"). */ max_fd = udhcp_sp_fd_set(&rfds, sockfd); tv.tv_sec = timeout - already_waited_sec; tv.tv_usec = 0; retval = 0; /* If we already timed out, fall through with retval = 0, else... */ if ((int)tv.tv_sec > 0) { timestamp_before_wait = (unsigned)monotonic_sec(); log1("Waiting on select..."); retval = select(max_fd + 1, &rfds, NULL, NULL, &tv); if (retval < 0) { /* EINTR? A signal was caught, don&#39;t panic */ if (errno == EINTR) { already_waited_sec += (unsigned)monotonic_sec() - timestamp_before_wait; continue; } /* Else: an error occured, panic! */ bb_perror_msg_and_die("select"); } } /* If timeout dropped to zero, time to become active: * resend discover/renew/whatever */ if (retval == 0) { /* When running on a bridge, the ifindex may have changed * (e.g. if member interfaces were added/removed * or if the status of the bridge changed). * Refresh ifindex and client_mac: */ if (udhcp_read_interface(client_config.interface, &client_config.ifindex, NULL, client_config.client_mac) ) { return 1; /* iface is gone? */ } if (clientid_mac_ptr) memcpy(clientid_mac_ptr, client_config.client_mac, 6); /* We will restart the wait in any case */ already_waited_sec = 0; switch (state) { case INIT_SELECTING: if (packet_num == 0) xid = random_xid(); if (packet_num < invert_bit) { /* need broadcast response*/ send_discover(xid, requested_ip, BROADCAST_FLAG); } else { /* need unicast response*/ send_discover(xid, requested_ip, UNICAST_FLAG); } timeout = timeout_circle[packet_num]; packet_num++; if (packet_num != discover_retries) { continue; } leasefail: msglog(LOG_PRIO_INFO, DHCPC_MODU_NAME, "zb debug lease_notify:%d\n", lease_notify); if (!lease_notify) { lease_notify = 1; udhcp_run_script(NULL, "leasefail", NULL); } #if BB_MMU /* -b is not supported on NOMMU */ if (opt & OPT_b) { /* background if no lease */ msglog(LOG_PRIO_INFO, DHCPC_MODU_NAME, "No lease, forking to background"); client_background(); /* do not background again! */ opt = ((opt & ~OPT_b) | OPT_f); } else #endif if (opt & OPT_n) { /* abort if no lease */ msglog(LOG_PRIO_INFO, DHCPC_MODU_NAME, "No lease, failing"); retval = 1; goto ret; } /* wait before trying again */ packet_num = 0; timeout = timeout_circle[packet_num]; continue; case REQUESTING: if (!discover_retries || packet_num < discover_retries) { /* send broadcast select packet */ send_select(xid, server_addr, requested_ip); timeout = discover_timeout; packet_num++; continue; } /* Timed out, go back to init state. * "discover...select...discover..." loops * were seen in the wild. Treat them similarly * to "no response to discover" case */ change_listen_mode(LISTEN_RAW); state = INIT_SELECTING; goto leasefail; case BOUND: /* 1/2 lease passed, enter renewing state */ state = RENEWING; client_config.first_secs = 0; /* make secs field count from 0 */ change_listen_mode(LISTEN_KERNEL); log1("Entering renew state"); /* fall right through */ case RENEW_REQUESTED: /* manual (SIGUSR1) renew */ case_RENEW_REQUESTED: case RENEWING: if (timeout > retrans_renew) { /* send an unicast renew request */ /* Sometimes observed to fail (EADDRNOTAVAIL) to bind * a new UDP socket for sending inside send_renew. * I hazard to guess existing listening socket * is somehow conflicting with it, but why is it * not deterministic then?! Strange. * Anyway, it does recover by eventually failing through * into INIT_SELECTING state. */ send_renew(xid, server_addr, requested_ip); timeout = retrans_renew; timeout >>= 1; continue; } /* retransfer request timeout */ else if (timeout >= 60) { send_renew(xid, server_addr, requested_ip); timeout >>= 1; continue; } /* Timed out, enter rebinding state */ log1("Entering rebinding state"); state = REBINDING; timeout += retrans_rebind; /* fall right through */ case REBINDING: /* Switch to bcast receive */ change_listen_mode(LISTEN_RAW); /* Lease is *really* about to run out, * try to find DHCP server using broadcast */ if (flag == 0 || timeout >= 60) { /* send a broadcast renew request */ send_renew(xid, 0 /*INADDR_ANY*/, requested_ip); timeout >>= 1; flag = 1; continue; } /* Timed out, enter init state */ msglog(LOG_PRIO_INFO, DHCPC_MODU_NAME, "Lease lost, entering init state"); udhcp_run_script(NULL, "deconfig", "rebind"); state = INIT_SELECTING; client_config.first_secs = 0; /* make secs field count from 0 */ /*timeout = 0; - already is */ packet_num = 0; continue; /* case RELEASED: */ } /* yah, I know, *you* say it would never happen */ timeout = INT_MAX; continue; /* back to main loop */ } /* if select timed out */ /* select() didn&#39;t timeout, something happened */ /* Is it a signal? */ /* note: udhcp_sp_read checks FD_ISSET before reading */ switch (udhcp_sp_read(&rfds)) { case SIGUSR1: client_config.first_secs = 0; /* make secs field count from 0 */ perform_renew(); if (state == RENEW_REQUESTED) goto case_RENEW_REQUESTED; /* Start things over */ packet_num = 0; /* Kill any timeouts, user wants this to hurry along */ timeout = 0; continue; case SIGUSR2: perform_release(requested_ip, server_addr); timeout = INT_MAX; continue; case SIGTERM: msglog(LOG_PRIO_INFO, DHCPC_MODU_NAME, "Received SIGTERM"); if (opt & OPT_R) /* release on quit */ perform_release(requested_ip, server_addr); goto ret0; } /* Is it a packet? */ if (listen_mode == LISTEN_NONE || !FD_ISSET(sockfd, &rfds)) continue; /* no */ { int len; /* A packet is ready, read it */ if (listen_mode == LISTEN_KERNEL) len = udhcp_recv_kernel_packet(&packet, sockfd); else len = udhcp_recv_raw_packet(&packet, sockfd); if (len == -1) { /* Error is severe, reopen socket */ msglog(LOG_PRIO_ERROR, DHCPC_MODU_NAME, "Read error: %s, reopening socket", strerror(errno)); sleep(discover_timeout); /* 3 seconds by default */ change_listen_mode(listen_mode); /* just close and reopen */ } /* If this packet will turn out to be unrelated/bogus, * we will go back and wait for next one. * Be sure timeout is properly decreased. */ already_waited_sec += (unsigned)monotonic_sec() - timestamp_before_wait; if (len < 0) continue; } if (packet.xid != xid) { log1("xid %x (our is %x), ignoring packet", (unsigned)packet.xid, (unsigned)xid); continue; } /* Ignore packets that aren&#39;t for us */ if (packet.hlen != 6 || memcmp(packet.chaddr, client_config.client_mac, 6) != 0 ) { //FIXME: need to also check that last 10 bytes are zero log1("chaddr does not match, ignoring packet"); // log2? continue; } message = udhcp_get_option(&packet, DHCP_MESSAGE_TYPE); if (message == NULL) { bb_error_msg("no message type option, ignoring packet"); continue; } switch (state) { case INIT_SELECTING: /* Must be a DHCPOFFER to one of our xid&#39;s */ if (*message == DHCPOFFER) { msglog(LOG_PRIO_INFO, DHCPC_MODU_NAME, "Received DHCP-OFFER"); /* TODO: why we don&#39;t just fetch server&#39;s IP from IP header? */ temp = udhcp_get_option(&packet, DHCP_SERVER_ID); if (!temp) { bb_error_msg("no server ID, ignoring packet"); continue; /* still selecting - this server looks bad */ } /* it IS unaligned sometimes, don&#39;t "optimize" */ move_from_unaligned32(server_addr, temp); /*xid = packet.xid; - already is */ if ((1 == keep_request) && (0 != inet_addr(str_r))) { requested_ip = inet_addr(str_r); } else { requested_ip = packet.yiaddr; } /* enter requesting state */ state = REQUESTING; timeout = 0; packet_num = 0; already_waited_sec = 0; } continue; case REQUESTING: case RENEWING: case RENEW_REQUESTED: case REBINDING: if (*message == DHCPACK) { msglog(LOG_PRIO_INFO, DHCPC_MODU_NAME, "Received DHCP-ACK"); temp = udhcp_get_option(&packet, DHCP_LEASE_TIME); if (!temp) { bb_error_msg("no lease time with ACK, using 1 hour lease"); lease_seconds = 60 * 60; } else { /* it IS unaligned sometimes, don&#39;t "optimize" */ move_from_unaligned32(lease_seconds, temp); lease_seconds = ntohl(lease_seconds); lease_seconds &= 0x0fffffff; /* paranoia: must not be prone to overflows */ if (lease_seconds < 10) /* and not too small */ lease_seconds = 10; } #if 1 //#if ENABLE_FEATURE_UDHCPC_ARPING /* RFC 2131 3.1 paragraph 5: * "The client receives the DHCPACK message with configuration * parameters. The client SHOULD perform a final check on the * parameters (e.g., ARP for allocated network address), and notes * the duration of the lease specified in the DHCPACK message. At this * point, the client is configured. If the client detects that the * address is already in use (e.g., through the use of ARP), * the client MUST send a DHCPDECLINE message to the server and restarts * the configuration process..." */ if (!arpping(packet.yiaddr, NULL, (uint32_t) 0, client_config.client_mac, client_config.interface, 2000) ) { msglog(LOG_PRIO_INFO, DHCPC_MODU_NAME, "Offered address is in use " "(got ARP reply), declining"); send_decline(xid, server_addr, packet.yiaddr); if (state != REQUESTING) udhcp_run_script(NULL, "deconfig", "addr_in_use"); change_listen_mode(LISTEN_RAW); state = INIT_SELECTING; client_config.first_secs = 0; /* make secs field count from 0 */ if (1 == keep_request) { requested_ip = inet_addr(str_r); } else { requested_ip = 0; } timeout = tryagain_timeout; packet_num = 0; already_waited_sec = 0; continue; /* back to main loop */ } #endif /* server offer a IP that we don&#39;t wan&#39;t, send decline for another */ if ((1 == keep_request) && (0 != inet_addr(str_r)) && (packet.yiaddr != inet_addr(str_r))) { decline_times ++; if (decline_times > 3) { /* server refuse us too many times, give up, wait for some time and then request again */ change_listen_mode(LISTEN_RAW); sleep(DEFAULT_KEEP_WAIT_TIME); state = REQUESTING; requested_ip = inet_addr(str_r); /* keep request the same ipaddr */ client_config.first_secs = 0; timeout = 0; already_waited_sec = 0; continue; /* back to main loop */ } else { send_decline(xid, server_addr, packet.yiaddr); change_listen_mode(LISTEN_RAW); state = INIT_SELECTING; client_config.first_secs = 0; requested_ip = inet_addr(str_r); timeout = tryagain_timeout; packet_num = 0; already_waited_sec = 0; continue; /* back to main loop */ } } /* enter bound state */ timeout = lease_seconds / 2; { struct in_addr temp_addr; temp_addr.s_addr = packet.yiaddr; msglog(LOG_PRIO_INFO, DHCPC_MODU_NAME, "Lease of %s obtained, lease time %u", inet_ntoa(temp_addr), (unsigned)lease_seconds); } flag = 0; /* retrans_renew = 3/8 */ retrans_renew = timeout / 2 + timeout / 4; /* retrans_rebind = 1/8 */ retrans_rebind = timeout / 4; requested_ip = packet.yiaddr; udhcp_run_script(&packet, state == REQUESTING ? "bound" : "renew", NULL); lease_notify = 0; state = BOUND; change_listen_mode(LISTEN_NONE); if (opt & OPT_q) { /* quit after lease */ if (opt & OPT_R) /* release on quit */ perform_release(requested_ip, server_addr); goto ret0; } /* future renew failures should not exit (JM) */ opt &= ~OPT_n; #if BB_MMU /* NOMMU case backgrounded earlier */ if (!(opt & OPT_f)) { client_background(); /* do not background again! */ opt = ((opt & ~OPT_b) | OPT_f); } #endif already_waited_sec = 0; continue; /* back to main loop */ } if (*message == DHCPNAK) { if (1 == keep_request) { change_listen_mode(LISTEN_RAW); sleep(DEFAULT_KEEP_WAIT_TIME); state = REQUESTING; requested_ip = inet_addr(str_r); /* keep request the same ipaddr */ client_config.first_secs = 0; timeout = 0; already_waited_sec = 0; } else { /* return to init state */ msglog(LOG_PRIO_INFO, DHCPC_MODU_NAME, "Received DHCP-NAK"); udhcp_run_script(&packet, "nak", NULL); if (state != REQUESTING) udhcp_run_script(NULL, "deconfig", "nak"); change_listen_mode(LISTEN_RAW); sleep(3); /* avoid excessive network traffic */ state = INIT_SELECTING; client_config.first_secs = 0; /* make secs field count from 0 */ requested_ip = 0; timeout = 0; packet_num = 0; already_waited_sec = 0; } } continue; /* case BOUND: - ignore all packets */ /* case RELEASED: - ignore all packets */ } /* back to main loop */ } /* for (;;) - main loop ends */ ret0: retval = 0; ret: /*if (client_config.pidfile) - remove_pidfile has its own check */ remove_pidfile(client_config.pidfile); return retval; }
最新发布
12-03
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值