Description
Given n, a positive integer, how many positive integers less than n are relatively prime to n? Two integers a and b are relatively prime if there are no integers x > 1, y > 0, z > 0 such that a = xy and b = xz.
Input
There are several test cases. For each test case, standard input contains a line with n <= 1,000,000,000. A line containing 0 follows the last case.
Output
For each test case there should be single line of output answering the question posed above.
Sample Input
7 12 0
Sample Output
6 4 题意求出在1到n之间与n互质的个数。 欧拉公式:φ(x)=x(1-1/p1)(1-1/p2)(1-1/p3)(1-1/p4)…..(1-1/pn),其中p1, p2……pn为x的所有质因数,x是不为0的整数。φ(1)=1(唯一和1互质的数(小于等于1)就是1本身)。 (注意:每种质因数只一个。比如12=2*2*3那么φ(12)=12*(1-1/2)*(1-1/3)=4#include<stdio.h> #include<iostream> #include<algorithm> using namespace std; long long euler(long long n){ long long ret=n; for(long long i=2;i*i<=n;i++){ if(n%i==0){ ret-=ret/i; while(n%i==0)n/=i; } } if(n>1) ret-=ret/n; return ret; } int main() { long long n; while(scanf("%I64d",&n),n) { printf("%I64d\n",euler(n)); } return 0; }