codevs1087 麦森数

本文介绍如何计算形如2P-1的麦森数的位数及最后500位数字,通过C++实现算法并提供代码示例。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题目描述 Description

形如2P-1的素数称为麦森数,这时P一定也是个素数。但反过来不一定,即如果P是个素数,2P-1不一定也是素数。到1998年底,人们已找到了37个麦森数。最大的一个是P=3021377,它有909526位。麦森数有许多重要应用,它与完全数密切相关。

任务:从文件中输入P(1000< P < 3100000),计算2P-1的位数和最后500位数字(用十进制高精度数表示)
输入描述 Input Description

文件中只包含一个整数P(1000< P< 3100000)
输出描述 Output Description

第一行:十进制高精度数2P-1的位数。

第2-11行:十进制高精度数2P-1的最后500位数字。(每行输出50位,共输出10行,不足500位时高位补0)

不必验证2P-1与P是否为素数。
样例输入 Sample Input

1279
样例输出 Sample Output

386

00000000000000000000000000000000000000000000000000

00000000000000000000000000000000000000000000000000

00000000000000104079321946643990819252403273640855

38615262247266704805319112350403608059673360298012

23944173232418484242161395428100779138356624832346

49081399066056773207629241295093892203457731833496

61583550472959420547689811211693677147548478866962

50138443826029173234888531116082853841658502825560

46662248318909188018470682222031405210266984354887

32958028878050869736186900714720710555703168729087

本题分两问,第一问求位数,可以证明:当x有n位时,必有10^(n-1)<=x<10^n(如x有3位时必有100=10^2<=x<1000=10^3),取常用对数,n-1<=lgx< n,即lgx的整数部分是n-1,也就是说数x的位数是lg(x)的整数部分+1。故欲求x的位数只需求floor(log10(x)+1).
2^p的位数为log(2^p)+1=plog2+1,欲求2^P-1是否可以直接用log 呢?只有一种情况不可以,就是2^p是一个整百,整千等数+1,比如1001。但因为是2^p是一个2的倍数,所以不可能是1001等数。

注意数组不要越界。否则RE。

#include<cstdio>
#include<iostream>
#include<cmath>
#include<algorithm>
using namespace std;
void print(int ans[])
{
    int t=0;
    for(int i=499;i>=0;i--)
    {
        if(i%50) printf("\n");
        printf("%d",ans[i]);
    }
}
void mul(int a[],int b[])
{
    int len,lena=500,lenb=500,rst[502]={0};
    while(a[lena]==0 && lena>0)lena--;
    while(b[lenb]==0 && lenb>0)lenb--;
    lena++;lenb++;
    for(int i=0;i<lena;i++)
        for(int j=0;j<lenb;j++)
        {
            rst[i+j]+=a[i]*b[j];
            rst[i+j+1]+=rst[i+j]/10;
            rst[i+j]=rst[i+j]%10;
            if(i+j>500) break;
        }
    for(int i=0;i<500;i++)
        a[i]=rst[i];
}
void mi(int p)
{
    int ans[505]={1},tmp[505]={2};
    while(p)
    {
        if(p&1)
            mul(ans,tmp);
        mul(tmp,tmp);
        p>>=1;
    }
    print(ans);
}
int main()
{
    int p;
    scanf("%d",&p);  
    printf("%d\n",(int)(p*log10(2))+1);  
    mi(p);  
}
内容概要:本文详细介绍了扫描单分子定位显微镜(scanSMLM)技术及其在三维超分辨体积成像中的应用。scanSMLM通过电调透镜(ETL)实现快速轴向扫描,结合4f检测系统将不同焦平面的荧光信号聚焦到固定成像面,从而实现快速、大视场的三维超分辨成像。文章不仅涵盖了系统硬件的设计与实现,还提供了详细的软件代码实现,包括ETL控制、3D样本模拟、体积扫描、单分子定位、3D重建和分子聚类分析等功能。此外,文章还比较了循环扫描与常规扫描模式,展示了前者在光漂白效应上的优势,并通过荧光珠校准、肌动蛋白丝、线粒体网络和流感A病毒血凝素(HA)蛋白聚类的三维成像实验,验证了系统的性能和应用潜力。最后,文章深入探讨了HA蛋白聚类与病毒感染的关系,模拟了24小时内HA聚类的动态变化,提供了从分子到细胞尺度的多尺度分析能力。 适合人群:具备生物学、物理学或工程学背景,对超分辨显微成像技术感兴趣的科研人员,尤其是从事细胞生物学、病毒学或光学成像研究的科学家和技术人员。 使用场景及目标:①理解和掌握scanSMLM技术的工作原理及其在三维超分辨成像中的应用;②学习如何通过Python代码实现完整的scanSMLM系统,包括硬件控制、图像采集、3D重建和据分析;③应用于单分子水平研究细胞内结构和动态过程,如病毒入侵机制、蛋白质聚类等。 其他说明:本文提供的代码不仅实现了scanSMLM系统的完整工作流程,还涵盖了多种超分辨成像技术的模拟和比较,如STED、GSDIM等。此外,文章还强调了系统在硬件改动小、成像速度快等方面的优势,为研究人员提供了从理论到实践的全面指导。
内容概要:本文详细介绍了基于Seggiani提出的渣层计算模型,针对Prenflo气流床气化炉中炉渣的积累和流动进行了模拟。模型不仅集成了三维代码以提供气化炉内部的温度和浓度分布,还探讨了操作条件变化对炉渣行为的影响。文章通过Python代码实现了模型的核心功能,包括炉渣粘度模型、流动速率计算、厚度更新、与三维模型的集成以及可视化展示。此外,还扩展了模型以考虑炉渣组成对特性的影响,并引入了Bingham流体模型,更精确地描述了含未溶解颗粒的熔渣流动。最后,通过实例展示了氧气-蒸汽流量增加2%时的动态响应,分析了温度、流动特性和渣层分布的变化。 适合人群:从事煤气化技术研究的专业人士、化工过程模拟工程师、以及对工业气化炉操作优化感兴趣的科研人员。 使用场景及目标:①评估不同操作条件下气化炉内炉渣的行为变化;②预测并优化气化炉的操作参(如温度、氧煤比等),以防止炉渣堵塞;③为工业气化炉的设计和操作提供理论支持和技术指导。 其他说明:该模型的实现基于理论公式和经验据,为确保模型准确性,实际应用中需要根据具体气化炉的据进行参校准。模型还考虑了多个物理场的耦合,包括质量、动量和能量守恒方程,能够模拟不同操作条件下的渣层演变。此外,提供了稳态求解器和动态模拟工具,可用于扰动测试和工业应用案例分析。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值