题目描述
Farmer John has been having trouble making his plants grow, and needs your help to water them properly. You are given the locations of N raindrops (1 <= N <= 100,000) in the 2D plane, where y represents vertical height of the drop, and x represents its location over a 1D number line:
;
Each drop falls downward (towards the x axis) at a rate of 1 unit per second. You would like to place Farmer John’s flowerpot of width W somewhere along the x axis so that the difference in time between the first raindrop to hit the flowerpot and the last raindrop to hit the flowerpot is at least some amount D (so that the flowers in the pot receive plenty of water). A drop of water that lands just on the edge of the flowerpot counts as hitting the flowerpot.
Given the value of D and the locations of the N raindrops, please compute the minimum possible value of W.
老板需要你帮忙浇花。给出N滴水的坐标,y表示水滴的高度,x表示它下落到x轴的位置。
每滴水以每秒1个单位长度的速度下落。你需要把花盆放在x轴上的某个位置,使得从被花盆接着的第1滴水开始,到被花盆接着的最后1滴水结束,之间的时间差至少为D。
我们认为,只要水滴落到x轴上,与花盆的边沿对齐,就认为被接住。给出N滴水的坐标和D的大小,请算出最小的花盆的宽度W。
输入输出格式
输入格式:
第一行2个整数 N 和 D。
第2.. N+1行每行2个整数,表示水滴的坐标(x,y)。
输出格式:
仅一行1个整数,表示最小的花盆的宽度。如果无法构造出足够宽的花盆,使得在D单位的时间接住满足要求的水滴,则输出-1。
输入输出样例
输入样例#1:
4 5
6 3
2 4
4 10
12 15
输出样例#1:
2
说明
【样例解释】
有4滴水, (6,3), (2,4), (4,10), (12,15).水滴必须用至少5秒时间落入花盆。花盆的宽度为2是必须且足够的。把花盆放在x=4..6的位置,它可以接到1和3水滴, 之间的时间差为10-3 = 7满足条件。
【数据范围】
40%的数据:1 ≤ N ≤ 1000,1 ≤ D ≤ 2000;
100%的数据:1 ≤ N ≤ 100000,1 ≤ D ≤ 1000000,0≤x,y≤106。
题解:对x进行排序,维护区间最小值和最大值,是否满足max-min>=d,如果不满足继续加入水滴数据,如果满足则记录,并且去掉最前端的水滴数据,继续向后累加。
这样,维护两个单调队列,一个记录区间的最大值,一个记录区间最小值,通过max-min的值维护区间长度,从而得到需求结论。
代码ERROR:q[h1],p[h2]写反了。
//还有-1的情况
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
using namespace std;
int p[100005],q[100005];
int n,d,ans=0xfffffff;
bool flag;
struct Point{
int x,y;
}a[100005];
int cmp(Point u,Point v)
{
if(u.x<=v.x) return 1;
else return 0;
}
int main()
{
// freopen("in.txt","r",stdin);
// freopen("out2.txt","w",stdout);
scanf("%d%d",&n,&d);
for(int i=1;i<=n;i++)
{
scanf("%d%d",&a[i].x,&a[i].y);
}
sort(a+1,a+n+1,cmp);
int h1=1,t1=1,h2=1,t2=1;
q[1]=1,p[1]=1;
for(int i=2;i<=n;i++)
{
while(a[q[t1]].y>=a[i].y && h1<=t1) t1--;//increase
q[++t1]=i;
while(a[p[t2]].y<a[i].y && h2<=t2) t2--;//decrease
p[++t2]=i;
while(h1<=t1 && h2<=t2 && abs(a[p[h2]].y-a[q[h1]].y)>=d)
{
ans=min(ans,abs(a[p[h2]].x-a[q[h1]].x));
if(a[p[h2]].x<a[q[h1]].x) h2++;
else h1++;
flag=1;
}
}
if(flag)
cout<<ans<<endl;
else cout<<-1<<endl;
}