Find the contiguous subarray within an array (containing at least one number) which has the largest sum.
For example, given the array[−2,1,−3,4,−1,2,1,−5,4],
the contiguous subarray[4,−1,2,1]has the largest sum =6.
More practice:
If you have figured out the O(n) solution, try coding another solution using the divide and conquer approach, which is more subtle.
int maxSubArray(int A[], int n) {
int curSum = 0;
int maxSum = A[0];
for(int j = 0; j < n; j++) {
if(curSum >= 0) {
curSum += A[j];
}
else {
curSum = A[j];
}
if(curSum > maxSum) {
maxSum = curSum;
}
}
return maxSum;
}
本文介绍了一种寻找具有最大和的连续子数组的算法,并提供了一个示例代码实现。该算法能在O(n)的时间复杂度内解决问题。
909

被折叠的 条评论
为什么被折叠?



