均值方差增量计算

单次计算

μ=∑i=1nxin\mu = \frac{\sum_{i=1}^{n} x_i}{n}μ=ni=1nxi
σ2=∑i=1n(xi−μ)2n=∑i=1nxi2−2∑i=1nxiμ+nμ2n=∑i=1nxi2−nμ2n=∑i=1nxi2n−μ2 \begin{array}{ll} \sigma^2 &= \frac{\sum_{i=1}^{n}(x_i - \mu)^2}{n} \\ &= \frac{\sum_{i=1}^{n} x_i^2 -2\sum_{i=1}^{n} x_i\mu + n\mu^2}{n} \\ &= \frac{\sum_{i=1}^{n} x_i^2 - n\mu^2}{n} \\ &= \frac{\sum_{i=1}^{n} x_i^2}{n} - \mu^2 \end{array} σ2=ni=1n(xiμ)2=ni=1nxi22i=1nxiμ+nμ2=ni=1nxi2nμ2=ni=1nxi2μ2

增量计算

指标第一批次第二批次合并
总数n1n_1n1n2n_2n2n1+n2n_1+n_2n1+n2
均值μ1\mu_1μ1μ2\mu_2μ2n1μ1+n2μ2n1+n2\frac{n_1 \mu_1 + n_2\mu_2}{n_1 + n_2}n1+n2n1μ1+n2μ2
方差σ1\sigma_1σ1σ2\sigma_2σ2?
∑xi2\sum x_i^2xi2n1σ12+n1μ12n_1 \sigma_1^2 + n_1 \mu_1^2n1σ12+n1μ12n2σ22+n2μ22n_2 \sigma_2^2 + n_2 \mu_2^2n2σ22+n2μ22n1σ12+n1μ12+n2σ22+n2μ22n_1 \sigma_1^2 + n_1 \mu_1^2 + n_2 \sigma_2^2 + n_2 \mu_2^2n1σ12+n1μ12+n2σ22+n2μ22

σ2=∑i=1nxi2n−μ2=n1σ12+n1μ12+n2σ22+n2μ22n1+n2−(n1μ1+n2μ2n1+n2)2=(n1+n2)(n1σ12+n1μ12+n2σ22+n2μ22)−(n1μ1+n2μ2)2(n1+n2)2=n1σ12+n2σ22n1+n2+n1n2μ12+n1n2μ22−2n1n2μ1μ2(n1+n2)2=n1σ12+n2σ22n1+n2+n1n2(μ1−μ2)2(n1+n2)2 \begin{array}{ll} \sigma^2 &= \frac{\sum_{i=1}^{n} x_i^2}{n} - \mu^2 \\ &= \frac{n_1 \sigma_1^2 + n_1 \mu_1^2 + n_2 \sigma_2^2 + n_2 \mu_2^2}{n_1+n_2} - (\frac{n_1 \mu_1 + n_2\mu_2}{n_1 + n_2})^2 \\ &= \frac{(n_1 + n_2)(n_1 \sigma_1^2 + n_1 \mu_1^2 + n_2 \sigma_2^2 + n_2 \mu_2^2) - (n_1 \mu_1 + n_2\mu_2)^2}{(n_1 + n_2)^2} \\ &= \frac{n_1 \sigma_1^2 + n_2 \sigma_2^2}{n_1 + n_2} + \frac{ n_1n_2\mu_1^2 + n_1n_2\mu_2^2 - 2n_1n_2\mu_1\mu_2}{(n_1 +n_2)^2} \\ &= \frac{n_1 \sigma_1^2 + n_2 \sigma_2^2}{n_1 + n_2} + \frac{ n_1n_2(\mu_1 - \mu_2)^2 }{(n_1 +n_2)^2} \end{array} σ2=ni=1nxi2μ2=n1+n2n1σ12+n1μ12+n2σ22+n2μ22(n1+n2n1μ1+n2μ2)2=(n1+n2)2(n1+n2)(n1σ12+n1μ12+n2σ22+n2μ22)(n1μ1+n2μ2)2=n1+n2n1σ12+n2σ22+(n1+n2)2n1n2μ12+n1n2μ222n1n2μ1μ2=n1+n2n1σ12+n2σ22+(n1+n2)2n1n2(μ1μ2)2
方差的增量来自均值漂移

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

颹蕭蕭

白嫖?

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值