把常用的传统方法总结一下,大概有如下
朴素方法(Naive)
y ^ t + 1 = y t \hat{y}_{t+1} = y_t y^t+1=yt
季节朴素
y ^ t + 1 = y t + 1 − s \hat{y}_{t+1} = y_{t+1-s} y^t+1=yt+1−s
简单平均
y ^ t + 1 = 1 t ∑ i = 1 t y i \hat{y}_{t+1} = \frac{1}{t}\sum_{i=1}^t y_i y^t+1=t1i=1∑tyi
移动窗口平均
y ^ t + 1 = 1 p ∑ i = 0 p − 1 y t − i \hat{y}_{t+1} = \frac{1}{p}\sum_{i=0}^{p-1} y_{t-i} y^t+1=p1i=0∑p−1yt−i
加权移动窗口平均
y ^ t + 1 = 1 p ∑ i = 0 p − 1 w i y t − i \hat{y}_{t+1} = \frac{1}{p}\sum_{i=0}^{p-1} w_iy_{t-i} y^t+1=p1i=0∑p−1wiyt−i
简单指数平滑
y ^ t + 1 = α y t + α ( 1 − α ) y t − 1 + ⋯ = α y t + ( 1 − α ) y ^ t − 1 \begin{array}{ll} \hat{y}_{t+1} &= \alpha y_t + \alpha(1-\alpha)y_{t-1} + \cdots \\ &= \alpha y_t + (1-\alpha)\hat{y}_{t-1} \end{array} y^t+1=αyt+α(1−α)yt−1+⋯=αyt+(1−α)y^t−1
Holt Winter’s 趋势模型
两次指数平滑
l
t
=
α
y
t
+
(
1
−
α
)
(
l
t
−
1
+
b
t
−
1
)
b
t
=
β
(
l
t
−
l
t
−
1
)
+
(
1
−
β
)
b
t
−
1
y
^
t
+
h
∣
t
=
l
t
+
h
b
t
\begin{array}{ll} l_t &= \alpha y_t + (1-\alpha)( l_{t-1} + b_{t-1}) \\ b_t &= \beta (l_t - l_{t-1}) + (1-\beta) b_{t-1} \\ \hat{y}_{t+h|t} &= l_t + hb_t \end{array}
ltbty^t+h∣t=αyt+(1−α)(lt−1+bt−1)=β(lt−lt−1)+(1−β)bt−1=lt+hbt
以上三个方程分别称为:水平(level)方程、趋势(trend)方程、预测(forecast)方程.
Holt Winter’s 季节模型
三次指数平滑
l
t
=
α
(
y
t
−
S
t
−
s
)
+
(
1
−
α
)
(
l
t
−
1
+
b
t
−
1
)
,
b
t
=
β
(
l
t
−
l
t
−
1
)
+
(
1
−
β
)
b
t
−
1
,
S
t
=
γ
(
y
t
−
l
t
)
+
(
1
−
γ
)
S
t
−
s
,
y
^
t
+
h
∣
t
=
l
t
+
h
b
t
+
S
t
+
h
−
s
\begin{array}{ll} l_t &= \alpha (y_t - S_{t-s}) + (1-\alpha)( l_{t-1} + b_{t-1}), \\ b_t &= \beta (l_t - l_{t-1}) + (1-\beta) b_{t-1}, \\ S_t &= \gamma (y_t-l_t) + (1-\gamma) S_{t-s},\\ \hat{y}_{t+h|t} &= l_t + hb_t + S_{t+h-s} \end{array}
ltbtSty^t+h∣t=α(yt−St−s)+(1−α)(lt−1+bt−1),=β(lt−lt−1)+(1−β)bt−1,=γ(yt−lt)+(1−γ)St−s,=lt+hbt+St+h−s
增加了季节项的指数平滑
ARIMA
不说了 …