小波变换网文精粹:小波变换教程(四)

本文通过对比傅立叶变换与小波变换在处理非平稳信号时的表现,阐述了为何在分析非平稳信号时需要频率信息。通过具体实例说明了傅立叶变换无法提供频率分量的时间定位信息。

小波变换网文精粹:小波变换教程(四)

原文:ROBI POLIKAR. THE ENGINEER'S ULTIMATE GUIDE TO WAVELET ANALYSIS:The Wavelet Tutorial

网址:http://users.rowan.edu/~polikar/WAVELETS/WTtutorial.html

译文转自:http://blog.163.com/renfengyuee@126/blog/static/35943136200910593251418/

四、为什么我们需要频率信息(2)?

让我们再看一个例子,图1.5显示了一个包含四个频率分量的信号,它们分别在不同时刻出现,因此这是一个非平稳信号。0-300ms时是一个100Hz的正弦波,300-600ms时则是一个50Hz的正弦波,600-800ms时是一个25Hz的正弦波,最后的200ms内是一个10Hz正弦波。


图1.5

下图是它的傅立叶变换:


图1.6

不要担心图中出现那些毛刺,那是由于信号中频率的突变引起的,在这篇文章里这些没有意义。注意到那些高频分量的幅度比低频分量大,这是因为高频信号比低频信号持续时间更长一些(分别为300ms和200ms)(信号中各频率分量的确切值并不重要)。

除了那些毛刺,图中的一切看起来都是正常的,有四个尖峰,对应原始信号中的四个频率分量,应该是正确的…

错!

当然了,也不完全错,但起码不完全对。对图1.2,考虑以下问题:各个频率分量都是在什么时刻出现的?

答案是

在所有时刻!还记得平稳信号吗?所有频率分量在信号的整个周期内一直存在,10Hz的信号一直存在,50Hz的信号亦然,100Hz的信号亦然。

现在,让我们来考虑一下图1.4或1.5展示的非平稳信号。

各个频率分量都是在什么时刻出现的?

对于图1.6来说,我们知道,在第一个时间段内出现的是最高频率的分量,在最后一个时间段内出现的是最低频率的分量。图1.5中信号的频率分量一直在变,因此,对这些信号来说,各个频率分量并没有出现在任意时刻。

现在,比较一下图1.3和1.6,二者的相似之处是显而易见的,在图中都显示了四个几乎一样的频率分量,即10,25,50和100Hz。除了1.6中的那些毛刺和两幅图中各频率分量的幅值(这些幅值可以做归一化处理),两幅频谱图几乎是一致的,虽然相应的时域信号之间差别很大。两个信号都包含了相同的频率分量,但是前者中的各频率分量出现在信号的整个周期内,而后者的频率分量则在不同的时间段内出现。那么,是什么导致两个完全不同的原始信号经傅立叶变换后的波形这么相像呢?回想一下,傅立叶变换仅仅给出了信号的频谱分量,但是却没有给出这些频谱分量的出现时间。因此,对于非平稳信号来说,傅立叶变换是不合适的,但有一个例外:

只有当我们仅仅关心信号中是否包含某个频率分量而不关心它出现的时间的时候,傅立叶变换才可以用于处理非平稳信号。但是,如果这些信息是我们需要的(假设),如果我们想知道频率分量出现的确切时间,傅立叶变换就不是合适的选择了。

对实际应用来说,很难把两者的区分开来,因为现实中平稳的和非平稳的信号都很多。举例来说,几乎所有的生物信号都是非平稳的,这其中著名的就是心电图(ECG)、脑电图(EEG)和肌电图(EMG)。

请注意,傅立叶变换仅仅给出了信号的频率分量信息,仅此而已,无它。

当需要对频谱分量进行时间定位时,则需要一个可以得到信号的时频表示的数学变换。

PS:原文pdf打包下载地址:http://download.youkuaiyun.com/detail/deepdsp/4061006

基于遗传算法的新的异构分布式系统任务调度算法研究(Matlab代码实现)内容概要:本文档围绕基于遗传算法的异构分布式系统任务调度算法展开研究,重点介绍了一种结合遗传算法的新颖优化方法,并通过Matlab代码实现验证其在复杂调度问题中的有效性。文中还涵盖了多种智能优化算法在生产调度、经济调度、车间调度、无人机路径规划、微电网优化等领域的应用案例,展示了从理论建模到仿真实现的完整流程。此外,文档系统梳理了智能优化、机器学习、路径规划、电力系统管理等多个科研方向的技术体系与实际应用场景,强调“借力”工具与创新思维在科研中的重要性。; 适合人群:具备一定Matlab编程基础,从事智能优化、自动化、电力系统、控制工程等相关领域研究的研究生及科研人员,尤其适合正在开展调度优化、路径规划或算法改进类课题的研究者; 使用场景及目标:①学习遗传算法及其他智能优化算法(如粒子群、蜣螂优化、NSGA等)在任务调度中的设计与实现;②掌握Matlab/Simulink在科研仿真中的综合应用;③获取多领域(如微电网、无人机、车间调度)的算法复现与创新思路; 阅读建议:建议按目录顺序系统浏览,重点关注算法原理与代码实现的对应关系,结合提供的网盘资源下载完整代码进行调试与复现,同时注重从已有案例中提炼可迁移的科研方法与创新路径。
【微电网】【创新点】基于非支配排序的蜣螂优化算法NSDBO求解微电网多目标优化调度研究(Matlab代码实现)内容概要:本文提出了一种基于非支配排序的蜣螂优化算法(NSDBO),用于求解微电网多目标优化调度问题。该方法结合非支配排序机制,提升了传统蜣螂优化算法在处理多目标问题时的收敛性和分布性,有效解决了微电网调度中经济成本、碳排放、能源利用率等多个相互冲突目标的优化难题。研究构建了包含风、光、储能等多种分布式能源的微电网模型,并通过Matlab代码实现算法仿真,验证了NSDBO在寻找帕累托最优解集方面的优越性能,相较于其他多目标优化算法表现出更强的搜索能力和稳定性。; 适合人群:具备一定电力系统或优化算法基础,从事新能源、微电网、智能优化等相关领域研究的研究生、科研人员及工程技术人员。; 使用场景及目标:①应用于微电网能量管理系统的多目标优化调度设计;②作为新型智能优化算法的研究与改进基础,用于解决复杂的多目标工程优化问题;③帮助理解非支配排序机制在进化算法中的集成方法及其在实际系统中的仿真实现。; 阅读建议:建议读者结合Matlab代码深入理解算法实现细节,重点关注非支配排序、拥挤度计算和蜣螂行为模拟的结合方式,并可通过替换目标函数或系统参数进行扩展实验,以掌握算法的适应性与调参技巧。
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值