基于DOTNET的活动记录框架

本文介绍了一款受Ruby on Rails的ActiveRecord启发而开发的DOTNET版本活动记录框架。该框架支持CRUD操作、事务处理、验证器及多数据库连接。通过示例展示了如何进行创建、读取、更新和删除等基本操作。

写过一段时间的DOTNET程序和ROR程序后,受ROR的ActiveRecord框架启发,故此写了DOTNET版本的活动记录框架。具有CRUD、事务、验证器、支持多数据库连接。

先介绍简单的CRUD操作。

建立表结构:

create table products(
id int primary key identity,
name varchar(50),
shape varchar(50),
amount int,
remark varchar(200)
)

 

然后定义类:

	using EtNet.ActiveRecord;

	[Table("products")]
	public class Product : ActiveRecordBase
	{
		public Product()
		{
			//
			// TODO: 在此处添加构造函数逻辑
			//
		}

		[PrimaryKey]
		public int id
		{
			get {return _id;}
			set {_id = value;}
		}
		[Field]
		public string name
		{
			get {return _name;}
			set {_name = value;}
		}
		[Field]
		public string shape
		{
			get {return _shape;}
			set {_shape = value;}
		}
		[Field]
		public int amount
		{
			get {return _amount;}
			set {_amount = value;}
		}
		[Field]
		public string remark
		{
			get {return _remark;}
			set {_remark = value;}
		}

		private int _id;
		private string _name;
		private string _shape;
		private int _amount;
		private string _remark;
	}

 

 

1、增加记录

			Product p = new Product();
			p.name = "电脑";
			p.shape = "PII";
			p.amount = 30;
			p.Create();

 

2、修改记录

			 Product p = (Product)Product.Find(typeof(Product),1);
			p.shape = "PIII";
			p.amount = 23;
			p.remark = "备用";
			p.Update();

 

3、删除记录

			Product p = (Product)Product.Find(typeof(Product),1);
			p.Destroy();

 

4、查询记录

			Product p = (Product)Product.Find(typeof(Product),1);
			Console.WriteLine(p.id);
			Console.WriteLine(p.name);
			Console.WriteLine(p.shape);
			Console.WriteLine(p.amount);

 

其他的功能操作以后再介绍。

本课题设计了一种利用Matlab平台开发的植物叶片健康状态识别方案,重点融合了色彩与纹理双重特征以实现对叶片病害的自动化判别。该系统构建了直观的图形操作界面,便于用户提交叶片影像并快速获得分析结论。Matlab作为具备高效数值计算与数据处理能力的工具,在图像分析与模式分类领域应用广泛,本项目正是借助其功能解决农业病害监测的实际问题。 在色彩特征分析方面,叶片影像的颜色分布常与其生理状态密切相关。通常,健康的叶片呈现绿色,而出现黄化、褐变等异常色彩往往指示病害或虫害的发生。Matlab提供了一系列图像处理函数,例如可通过色彩空间转换与直方图统计来量化颜色属性。通过计算各颜色通道的统计参数(如均值、标准差及主成分等),能够提取具有判别力的色彩特征,从而为不同病害类别的区分提供依据。 纹理特征则用于描述叶片表面的微观结构与形态变化,如病斑、皱缩或裂纹等。Matlab中的灰度共生矩阵计算函数可用于提取对比度、均匀性、相关性等纹理指标。此外,局部二值模式与Gabor滤波等方法也能从多尺度刻画纹理细节,进一步增强病害识别的鲁棒性。 系统的人机交互界面基于Matlab的图形用户界面开发环境实现。用户可通过该界面上传待检图像,系统将自动执行图像预处理、特征抽取与分类判断。采用的分类模型包括支持向量机、决策树等机器学习方法,通过对已标注样本的训练,模型能够依据新图像的特征向量预测其所属的病害类别。 此类课题设计有助于深化对Matlab编程、图像处理技术与模式识别原理的理解。通过完整实现从特征提取到分类决策的流程,学生能够将理论知识与实际应用相结合,提升解决复杂工程问题的能力。总体而言,该叶片病害检测系统涵盖了图像分析、特征融合、分类算法及界面开发等多个技术环节,为学习与掌握基于Matlab的智能检测技术提供了综合性实践案例。 资源来源于网络分享,仅用于学习交流使用,请勿用于商业,如有侵权请联系我删除!
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值