最优二叉查找树的期望搜索代价(动态规划)C++实现

本文介绍了一种基于概率计算最优二叉查找树的方法,并提供了一个C++实现示例。该程序通过用户输入关键字及其出现概率来计算最优二叉查找树的期望搜索代价。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

// 最优二叉查找树的期望搜索代价.cpp : Defines the entry point for the console application.
//

#include "stdafx.h"
#include<iostream>
#include<cmath>
#include<limits>
#define N 100
using namespace std;
const double MAX = numeric_limits<double>::max(); //double的最大值

int _tmain(int argc, _TCHAR* argv[])
{
//p[j]存储第j关键字的概率(j=1...n)
double p[N];
//存储第j虚拟键的概率(j=0...n)
double q[N];
//存储包含关键字ki....kj的最优子树的搜索代价
double c[N][N];
//存储包含关键字ki....kj和虚拟键的最优子树的概率和
double w[N][N];
//存储存储包含关键字ki....kj的最优子树的根
int root[N][N];
int cases;
cout<<"请输入案例的个数:"<<endl;
cin>>cases;
while(cases--)
{
int n;
double sum = 0;
int i,j,l;
cout<<"请输入关键字的个数:"<<endl;
cin>>n;
cout<<"请输入每个关键字的概率:"<<endl;
for(i=1;i<=n;i++)
{
cin>>p[i];
sum += p[i];
}
cout<<"请输入每个虚拟键的概率:"<<endl;
for(i=0;i<=n;i++)
{
cin>>q[i];
sum += q[i];
}
//
if(abs(sum-1)>0.01)
{
cout<<"输入的概率和不为1,请重新输入"<<endl;
cases++;
continue;
}
for(i=1;i<=n+1;i++)
{
c[i][i-1] = q[i-1];
w[i][i-1] = q[i-1];
}
for(l=1;l<=n;l++)
{
for(i=1;i<=n-l+1;i++)
{
j = l+i-1;
c[i][j] = MAX;
w[i][j] = w[i][j-1] + p[j] +q[j];
int r;
for(r=i;r<=j;r++)
{
double k = c[i][r-1] + w[i][j] + c[r+1][j];
if(k<c[i][j])
{
c[i][j] = k;
root[i][j] = k;
}
}
}
}
cout<<"最优二叉查找树的期望搜索代价为:"<<c[1][n]<<endl;
}
system("pause");
return 0;
}

---------------------------------------------测试程序----------------------------------------------

请输入案例的个数:
1
请输入关键字的个数:
5
请输入每个关键字的概率:
0.15 0.10 0.05 0.10 0.20
请输入每个虚拟键的概率:
0.05 0.10 0.05 0.05 0.05 0.10
最优二叉查找树的期望搜索代价为:2.75
请按任意键继续. . .

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值