package org.andengine.examples;
import java.io.IOException;
import java.io.InputStream;
import org.andengine.engine.camera.Camera;
import org.andengine.engine.options.EngineOptions;
import org.andengine.engine.options.ScreenOrientation;
import org.andengine.engine.options.resolutionpolicy.RatioResolutionPolicy;
import org.andengine.entity.scene.Scene;
import org.andengine.entity.scene.background.Background;
import org.andengine.entity.sprite.Sprite;
import org.andengine.entity.util.FPSLogger;
import org.andengine.opengl.texture.ITexture;
import org.andengine.opengl.texture.bitmap.BitmapTexture;
import org.andengine.opengl.texture.region.ITextureRegion;
import org.andengine.opengl.texture.region.TextureRegionFactory;
import org.andengine.ui.activity.SimpleBaseGameActivity;
import org.andengine.util.adt.io.in.IInputStreamOpener;
import org.andengine.util.debug.Debug;
public class SpriteExample extends SimpleBaseGameActivity {
private static final int CAMERA_WIDTH = 720;
private static final int CAMERA_HEIGHT = 480;
private ITexture mTexture;
private ITextureRegion mFaceTextureRegion;
@Override
public EngineOptions onCreateEngineOptions() {
final Camera camera = new Camera(0, 0, CAMERA_WIDTH, CAMERA_HEIGHT);
return new EngineOptions(true, ScreenOrientation.LANDSCAPE_SENSOR, new RatioResolutionPolicy(CAMERA_WIDTH, CAMERA_HEIGHT), camera);
}
@Override
public void onCreateResources() {
try {
this.mTexture = new BitmapTexture(this.getTextureManager(), new IInputStreamOpener() {
@Override
public InputStream open() throws IOException {
return getAssets().open("gfx/face_box.png");
}
});
this.mTexture.load();
this.mFaceTextureRegion = TextureRegionFactory.extractFromTexture(this.mTexture);
} catch (IOException e) {
Debug.e(e);
}
}
@Override
public Scene onCreateScene() {
this.mEngine.registerUpdateHandler(new FPSLogger());
final Scene scene = new Scene();
scene.setBackground(new Background(0.09804f, 0.6274f, 0.8784f));
/* Calculate the coordinates for the face, so its centered on the camera. */
final float centerX = (CAMERA_WIDTH - this.mFaceTextureRegion.getWidth()) / 2;
final float centerY = (CAMERA_HEIGHT - this.mFaceTextureRegion.getHeight()) / 2;
/* Create the face and add it to the scene. */
final Sprite face = new Sprite(centerX, centerY, this.mFaceTextureRegion, this.getVertexBufferObjectManager());
scene.attachChild(face);
return scene;
}
}
这是AndEngine的第三个例子,在屏幕的最中间绘制了一个精灵,精灵的纹理来源于assetes文件夹中的图片资源文件。这回的例子带来了几个新的概念,Texture“纹理”、TextureRegion“纹理范围”、Sprite“精灵”。其中精灵是一个矩形图形(继承于RectangularShape,与Rectangular一样)并且是TextureRegion的载体,可以这样认为RectangularShape为精灵提供了矩形,TextureRegion为精灵提供了纹理映射,Texture为提供了覆盖物,扩展阅读“纹理映射”。
先看Sprite,他继承RectangularShape拥有矩形形状的特征,拥有ITextureRegion成员变量用于将Texture正确映射在矩形中。同样他拥有一个缓存对象HighPerformanceSpriteVertexBufferObject(高性能精灵顶点缓存对象),此对象实现了接口ISpriteVertexBufferObject:
public interface ISpriteVertexBufferObject extends IVertexBufferObject {
//更新颜色
public void onUpdateColor(final Sprite pSprite);
//更新顶点
public void onUpdateVertices(final Sprite pSprite);
//更新纹理坐标(纹理映射)
public void onUpdateTextureCoordinates(final Sprite pSprite);
}
意味着他的缓存数据mBufferData中不但拥有矩形中的顶点和颜色,还拥有纹理映射到矩形上的坐标,这个坐标的来源正是ITextureRegion提供的U、V、U2、V2坐标。
再看看Texture,这个可以说是Engine中最重要的资源,他专门提供了onCreateResources的办法让我们在其中建立需要的资源,并且提供了TextureManager对资源进行统一管理。我们只需要提供资源的来源,这里是实现一个IInputStreamOpener类,让管理器在需要的时候能够获得他。建立完成后记得调用mTexture.load();这样管理器会在渲染线程中加载纹理到硬件,并且得到索引资源的ID。
Texture管理的结构虽然很复杂,其实只需要记住一个过程就好了:
Engine.onDrawFrame 中调用this.mTextureManager.updateTextures(pGLState);
mTextureManager.updateTextures 中会从硬件加载或卸载textures资源。加载资源时调用Texture.loadToHardware
Texture.loadToHardware 中创建了mHardwareTextureID并且与纹理绑定,继续调用实现类中的writeTextureToHardware
XXXXTexture.writeTextureToHardware 具体的纹理实现,会将纹理数据写入硬件
本文通过AndEngine示例介绍如何在屏幕中央绘制精灵。详细解释了Texture、TextureRegion及Sprite的概念与使用方法,并展示了资源加载及纹理映射的过程。
4000

被折叠的 条评论
为什么被折叠?



