Objective-c NSDate 取时间,日期,星期,毫秒等

本文介绍了 iOS 开发中 NSDate 的多种实用操作方法,包括获取当前日期、计算过去24小时的日期、解析日期组件(年月日时分秒),以及日期格式化为字符串等。此外还介绍了如何使用 NSTimeInterval 来计算时间间隔。

NSDate


//得到当前的日期
NSDate *date = [NSDate date];
NSLog(@"date:%@",date);

//得到(24 * 60 * 60)即24小时之前的日期,dateWithTimeIntervalSinceNow:
NSDate *yesterday = [NSDate dateWithTimeIntervalSinceNow: -(24 * 60 * 60)];
NSLog(@"yesterday:%@",yesterday);


NSDateFormatter *formatter =[[[NSDateFormatter alloc] init] autorelease];
NSDate *date = [NSDate date];
[formatter setTimeStyle:NSDateFormatterMediumStyle];
NSCalendar *calendar = [[[NSCalendar alloc] initWithCalendarIdentifier:NSGregorianCalendar] autorelease];
NSDateComponents *comps = [[[NSDateComponents alloc] init] autorelease];
NSInteger unitFlags = NSYearCalendarUnit |
NSMonthCalendarUnit |
NSDayCalendarUnit |
NSWeekdayCalendarUnit |
NSHourCalendarUnit |
NSMinuteCalendarUnit |
NSSecondCalendarUnit;
//int week=0;
comps = [calendar components:unitFlags fromDate:date];
int week = [comps weekday];
int year=[comps year];
int month = [comps month];
int day = [comps day];
//[formatter setDateStyle:NSDateFormatterMediumStyle];
//This sets the label with the updated time.
int hour = [comps hour];
int min = [comps minute];
int sec = [comps second];
NSLog(@"week%d",week);
NSLog(@"year%d",year);
NSLog(@"month%d",month);
NSLog(@"day%d",day);
NSLog(@"hour%d",hour);
NSLog(@"min%d",min);
NSLog(@"sec%d",sec);

//得到毫秒
NSDateFormatter *dateFormatter = [[NSDateFormatter alloc] init];
[dateFormatter setDateStyle:NSDateFormatterMediumStyle];
[dateFormatter setTimeStyle:NSDateFormatterShortStyle];
//[dateFormatter setDateFormat:@"hh:mm:ss"]
[dateFormatter setDateFormat:@"yyyy-MM-dd HH:mm:ss.SSS"];
NSLog(@"Date%@", [dateFormatter stringFromDate:[NSDate date]]);
[dateFormatter release];


iPhone NSDate 时间间隔

NSDate *beginTime = [NSDate date];
....
NSTimeInterval loadDuration = [beginTime timeIntervalSinceNow];

关于NSTimeInterval的使用

NSTimeInterval time = [[NSDate date] timeIntervalSince1970]; 可以这样定义
NSLog(@"当前时间为%f", time); 打印出从1970年开始到现在的秒数.

可见time可以赋值给float类型
所以可以这样写:
float a = time;

这样就可以很容易的到两个时间点中间相差多少秒。

【无线传感器】使用 MATLAB和 XBee连续监控温度传感器无线网络研究(Matlab代码实现)内容概要:本文围绕使用MATLAB和XBee技术实现温度传感器无线网络的连续监控展开研究,介绍了如何构建无线传感网络系统,并利用MATLAB进行数据采集、处理与可视化分析。系统通过XBee模块实现传感器节点间的无线通信,实时传输温度数据至主机,MATLAB负责接收并处理数据,实现对环境温度的动态监测。文中详细阐述了硬件连接、通信协议配置、数据解析及软件编程实现过程,并提供了完整的MATLAB代码示例,便于读者复现和应用。该方案具有良好的扩展性和实用性,适用于远程环境监测场景。; 适合人群:具备一定MATLAB编程基础和无线通信基础知识的高校学生、科研人员及工程技术人员,尤其适合从事物联网、传感器网络相关项目开发的初学者与中级开发者。; 使用场景及目标:①实现基于XBee的无线温度传感网络搭建;②掌握MATLAB与无线模块的数据通信方法;③完成实时数据采集、处理与可视化;④为环境监测、工业测控等实际应用场景提供技术参考。; 阅读建议:建议读者结合文中提供的MATLAB代码与硬件连接图进行实践操作,先从简单的点对点通信入手,逐步扩展到多节点网络,同时可进一步探索数据滤波、异常检测、远程报警等功能的集成。
内容概要:本文系统讲解了边缘AI模型部署与优化的完整流程,涵盖核心挑战(算力、功耗、实时性、资源限制)与设计原则,详细对比主流边缘AI芯片平台(如ESP32-S3、RK3588、Jetson系列、Coral等)的性能参数与适用场景,并以RK3588部署YOLOv8为例,演示从PyTorch模型导出、ONNX转换、RKNN量化到Tengine推理的全流程。文章重点介绍多维度优化策略,包括模型轻量化(结构选择、输入尺寸调整)、量化(INT8/FP16)、剪枝与蒸馏、算子融合、批处理、硬件加速预处理及DVFS动态调频等,显著提升帧率并降低功耗。通过三个实战案例验证优化效果,最后提供常见问题解决方案与未来技术趋势。; 适合人群:具备一定AI模型开发经验的工程师,尤其是从事边缘计算、嵌入式AI、计算机视觉应用研发的技术人员,工作年限建议1-5年;熟悉Python、C++及深度学习框架(如PyTorch、TensorFlow)者更佳。; 使用场景及目标:①在资源受限的边缘设备上高效部署AI模型;②实现高帧率与低功耗的双重优化目标;③掌握从芯片选型、模型转换到系统级调优的全链路能力;④解决实际部署中的精度损失、内存溢出、NPU利用率低等问题。; 阅读建议:建议结合文中提供的代码实例与工具链(如RKNN Toolkit、Tengine、TensorRT)动手实践,重点关注量化校准、模型压缩与硬件协同优化环节,同时参考选型表格匹配具体应用场景,并利用功耗监测工具进行闭环调优。
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值