1033. City Road

本文介绍了一种利用动态规划解决特定场景下最短路径数量计算的问题。在M*N网格中,从起点到终点只能向上或向右移动,并考虑障碍物的影响。通过一维数组实现二维数组的功能来存储路径数。

TAG 动态规划

有M*N间房子,有(M+1)*(N+1)个路口 ,题目求的就是从路口(0,0) 到 路口(M+1, N+1) 有多少最短路。所谓最短路,就是只能向右或者向上走。

设f[i][j]为到点 (i,j)的最短路径数,有 f[i][j] = f[i-1][j] + f[i][j-1] ,注意边界。

而题目增加了big buildings后,big buildings内部的的节点是无法到达的,所以要特殊处理,如上图的蓝色点为big buildings的内部覆盖路口。

这里还有一点要注意,像上图左边的小big building,虽然没有内部覆盖的路口,但是下边的橙色路口是无法到达上边路口的。数据没考虑到这点,不进行处理也能ac。因为是后来才发现的,我很懒,程序中就不改了。

因为m、n没给出具体范围,只给出m*n的范围,所以程序中直接开一维数组当二维数组用,可读性可能差点,不过简单点。

跑了0.34s, 有点慢。标记内部路口那部分能用2维线段树改善吧,懒得写。。

#include <stdio.h> #include<memory.h> const int N=1000000*2+5; long long house[N]; int n,m,b,a,x,y; int B; long long getLeftLoc(int x, int y) { if (y==0) return 0; return house[ x*(n+1) +y-1 ]==-1 ? 0: house[ x*(n+1) +y-1 ]; } long long getDownLoc(int x, int y) { if (x==0) return 0; return house[ (x-1)*(n+1) +y ]==-1? 0: house[ (x-1)*(n+1) +y ]; } int main(int argc, char** argv) { while ( scanf("%d%d", &m, &n) && n*m!=0 ) { memset( house, 0, sizeof(long long)*(n+1)*(m+1) ); house[0]=1; scanf("%d",&B); for (int i=0; i<B; ++i) { scanf("%d%d%d%d", &x, &y, &a, &b); for (int ii=0; ii<a-1; ++ii) for (int jj=0; jj<b-1; ++jj) house[ (x+ii)*(n+1) +y+jj ]=-1; } for (int i=0; i<=m; ++i) { for (int j=0; j<=n; ++j) { if ( (i+j)==0 ) continue; if (house[ i*(n+1)+j ]!=-1 ) { house[ i*(n+1)+j ]= getLeftLoc(i,j)+getDownLoc(i,j); } } } /* for (int i=0; i<=m; ++i) { for (int j=0; j<=n; ++j) printf("%lld ", house[ i*(n+1) +j]); printf("/n"); }*/ printf("%lld/n", house[(n+1)*(m+1)-1]); } return 0; }

bool SdNavigationCity::IsApproachMergeJCT(JunctionInfoCity &merge_jct) { bool approaching_merge = false; //途径汇入口 for (auto jct : junctions_info_city_) { /* SD_COARSE_MATCH_LOG << " [IsApproachMergeJCT] APPROACHING junction merge ,offset: " << junction.offset << StrJunctionType(junction.junction_type) << " junction's main_road_lane_nums: " << junction.main_road_lane_nums << " road_merge_main_road_lane_nums: " << junction.road_merge_main_road_lane_nums << " target_road_lane_nums: " << junction.target_road_lane_nums;*/ SD_COARSE_MATCH_LOG << fmt::format("{}", jct); } for (auto junction : junctions_info_city_) { //auto junction = junctions_info_city_.front(); /* 自车在主路、前方合流、车道数未增加 */ if (junction.offset < 300 && junction.offset > 0.0 && junction.junction_type_city == JunctionTypeCity::RoadMerge && junction.junction_state_city != JunctionStateCity::PASSED) { SD_COARSE_MATCH_LOG << " [IsApproachMergeJCT] prev_road_class size: "<<junction.prev_road_class.size()<<" ,road_merge_main_road_lane_nums: "<<junction.road_merge_main_road_lane_nums <<" target_road_lane_nums: "<<junction.target_road_lane_nums; if (junction.prev_road_class.size() == 2 && junction.road_merge_main_road_lane_nums == junction.target_road_lane_nums) { SD_COARSE_MATCH_LOG << " [IsApproachMergeJCT] split_merge_direction: "<<(int)junction.split_merge_direction ; /* left 指自车在左侧支路汇入主路 */ if ((junction.split_merge_direction == DirectionSplitMerge::Left && junction.prev_road_class.front() == RoadMainType::RoadMain) || (junction.split_merge_direction == DirectionSplitMerge::Right && junction.prev_road_class.back() == RoadMainType::RoadMain)) { approaching_merge = true; merge_jct = junction; SD_COARSE_MATCH_LOG << " [IsApproachMergeJCT] APPROACHING junction merge ,offset: " << junction.offset << StrJunctionType(junction.junction_type) << " junction's main_road_lane_nums: " << junction.main_road_lane_nums << " road_merge_main_road_lane_nums: " << junction.road_merge_main_road_lane_nums << " target_road_lane_nums: " << junction.target_road_lane_nums; break; } } } } SD_COARSE_MATCH_LOG << " [IsApproachMergeJCT] APPROACHING junction merge: " << approaching_merge; return approaching_merge; }优化代码,查找路口时,找到第一个大于0 的路口,如果这个路口满足源代码的条件,则break
11-27
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值