How to Prepare Storage for ASM

This document describes how to prepare your storage sub-system before you configure Automatic Storage Management (ASM). When preparing your storage to use ASM, first determine the storage option for your system and then prepare the disk storage for the specific operating system environment.

A) You can create an ASM diskgroup using one of the following storage resources:
1) Raw disk partition—A raw partition can be the entire disk drive or a section of a disk drive. However, the ASM disk cannot be in a partition that includes the partition table because the partition table can be overwritten.

2) Logical unit numbers (LUNs)—Using hardware RAID functionality to create LUNs is a recommended approach. Storage hardware RAID 0+1 or RAID5, and other RAID configurations, can be provided to ASM as ASM disks.

3) Raw logical volumes (LVM)—LVMs are supported in less complicated configurations where an LVM is mapped to a LUN, or an LVM uses disks or raw partitions. LVM configurations are not recommended by Oracle because they create a duplication of functionality. Oracle also does not recommended using LVMs for mirroring because ASM already provides mirroring.

4) NFS files—NFS files are suitable for testing, but are not a recommended configuration for production environments. Using NFS files with ASM duplicates ASM functionality. Though, NetApp as an NFS vendor certifies its product with ASM. So there are customers using NFS and ASM together.

B) The procedures for preparing storage resources for ASM are:

1) Identify or create the storage devices for ASM by identifying all of the storage resource device names that you can use to create an ASM disk group. For example, on Linux systems, device names are typically presented from the /dev directory with the /dev/device_name_identifier name syntax.

2) Change the ownership and the permissions on storage device resources. For example, the following steps are required on Linux systems:

2.1) Change the user and group ownership of devices to oracle:dba
2.2) Change the device permissions to read/write
2.3) On older Linux versions, you must configure raw device binding

After you have configured ASM, ensure that disk discovery has been configured correctly by setting the ASM_DISKSTRING initialization parameter.

Note: Setting the ownership to oracle:dba is just one example that corresponds to the default settings. A non-default installation may require different settings. In general, the owner of the disk devices should be the same as the owner of the Oracle binary. The group ownership should be OSDBA of the ASM instance, which is defined at installation.


C) Recommendations for Storage Preparation. The following are guidelines for preparing storage for use with ASM:

1) Configure two disk groups, one for the datafile and the other for the Flash Recovery Area. For availability purposes, one is used as a backup for the other.

2) Ensure that LUNs, which are disk drives of partitions, that ASM disk groups use have similar storage performance and availability characteristics. In storage configurations with mixed speed drives, such as 10K and 15K RPM, I/O distribution is constrained by the slowest speed drive.

3) Be aware that ASM data distribution policy is capacity-based. LUNs provided to ASM have the same capacity for each disk group to avoid an imbalance.

4) Use the storage array hardware RAID 1 mirroring protection when possible to reduce the mirroring overhead on the server. Use ASM mirroring redundancy in the absence of a hardware RAID, or when you need host-based volume management functionality, such as mirroring across storage systems. You can use ASM mirroring in configurations when mirroring between geographically-separated sites over a storage interface.

Hardware RAID 1 in some lower-cost storage products is inefficient and degrades the performance of the array. ASM redundancy delivers improved performance in lower-cost storage products.

5) Maximize the number of disks in a disk group for maximum data distribution and higher I/O bandwidth.

6) Create LUNs using the outside half of disk drives for higher performance. If possible, use small disks with the highest RPM.

7) Create large LUNs to reduce LUN management overhead.

8) Minimize I/O contention between ASM disks and other applications by dedicating disks to ASM disk groups for those disks that are not shared with other applications.

9) Choose a hardware RAID stripe size that is a power of 2 and less than or equal to the size of the ASM allocation unit.

10) Avoid using a Logical Volume Manager (LVM) because an LVM would be redundant. However, thereare situations where certain multipathing or third party cluster solutions require an LVM. In these situations, use the LVM to represent a single LUN without striping or mirroring to minimize the performance impact.

11) For Linux, when possible, use the Oracle ASMLIB feature to address device naming and permission persistency.

12) ASMLIB provides an alternative interface for the ASM-enabled kernel to discover and access block devices. ASMLIB provides storage and operating system vendors the opportunity to supply extended storage-related features. These features provide benefits such as improved performance and greater data integrity.

From Oracle

-------------------------------------------------------------------------------------------------------

Blog http://blog.youkuaiyun.com/tianlesoftware

Email: dvd.dba@gmail.com

DBA1 群:62697716(); DBA2 群:62697977() DBA3 群:62697850()

DBA 超级群:63306533(); DBA4 群: 83829929 DBA5群: 142216823

聊天 群:40132017 聊天2群:69087192

--加群需要在备注说明Oracle表空间和数据文件的关系,否则拒绝申请

基于数据挖掘的音乐推荐系统设计与实现 需要一个代码说明,不需要论文 采用python语言,django框架,mysql数据库开发 编程环境:pycharm,mysql8.0 系统分为前台+后台模式开发 网站前台: 用户注册, 登录 搜索音乐,音乐欣赏(可以在线进行播放) 用户登陆时选择相关感兴趣的音乐风格 音乐收藏 音乐推荐算法:(重点) 本课题需要大量用户行为(如播放记录、收藏列表)、音乐特征(如音频特征、歌曲元数据)等数据 (1)根据用户之间相似性或关联性,给一个用户推荐与其相似或有关联的其他用户所感兴趣的音乐; (2)根据音乐之间的相似性或关联性,给一个用户推荐与其感兴趣的音乐相似或有关联的其他音乐。 基于用户的推荐和基于物品的推荐 其中基于用户的推荐是基于用户的相似度找出相似相似用户,然后向目标用户推荐其相似用户喜欢的东西(和你类似的人也喜欢**东西); 而基于物品的推荐是基于物品的相似度找出相似的物品做推荐(喜欢该音乐的人还喜欢了**音乐); 管理员 管理员信息管理 注册用户管理,审核 音乐爬虫(爬虫方式爬取网站音乐数据) 音乐信息管理(上传歌曲MP3,以便前台播放) 音乐收藏管理 用户 用户资料修改 我的音乐收藏 完整前后端源码,部署后可正常运行! 环境说明 开发语言:python后端 python版本:3.7 数据库:mysql 5.7+ 数据库工具:Navicat11+ 开发软件:pycharm
MPU6050是一款广泛应用在无人机、机器人和运动设备中的六轴姿态传感器,它集成了三轴陀螺仪和三轴加速度计。这款传感器能够实时监测并提供设备的角速度和线性加速度数据,对于理解物体的动态运动状态至关重要。在Arduino平台上,通过特定的库文件可以方便地与MPU6050进行通信,获取并解析传感器数据。 `MPU6050.cpp`和`MPU6050.h`是Arduino库的关键组成部分。`MPU6050.h`是头文件,包含了定义传感器接口和函数声明。它定义了类`MPU6050`,该类包含了初始化传感器、读取数据等方法。例如,`begin()`函数用于设置传感器的工作模式和I2C地址,`getAcceleration()`和`getGyroscope()`则分别用于获取加速度和角速度数据。 在Arduino项目中,首先需要包含`MPU6050.h`头文件,然后创建`MPU6050`对象,并调用`begin()`函数初始化传感器。之后,可以通过循环调用`getAcceleration()`和`getGyroscope()`来不断更新传感器读数。为了处理这些原始数据,通常还需要进行校准和滤波,以消除噪声和漂移。 I2C通信协议是MPU6050与Arduino交互的基础,它是一种低引脚数的串行通信协议,允许多个设备共享一对数据线。Arduino板上的Wire库提供了I2C通信的底层支持,使得用户无需深入了解通信细节,就能方便地与MPU6050交互。 MPU6050传感器的数据包括加速度(X、Y、Z轴)和角速度(同样为X、Y、Z轴)。加速度数据可以用来计算物体的静态位置和动态运动,而角速度数据则能反映物体转动的速度。结合这两个数据,可以进一步计算出物体的姿态(如角度和角速度变化)。 在嵌入式开发领域,特别是使用STM32微控制器时,也可以找到类似的库来驱动MPU6050。STM32通常具有更强大的处理能力和更多的GPIO口,可以实现更复杂的控制算法。然而,基本的传感器操作流程和数据处理原理与Arduino平台相似。 在实际应用中,除了基本的传感器读取,还可能涉及到温度补偿、低功耗模式设置、DMP(数字运动处理器)功能的利用等高级特性。DMP可以帮助处理传感器数据,实现更高级的运动估计,减轻主控制器的计算负担。 MPU6050是一个强大的六轴传感器,广泛应用于各种需要实时运动追踪的项目中。通过 Arduino 或 STM32 的库文件,开发者可以轻松地与传感器交互,获取并处理数据,实现各种创新应用。博客和其他开源资源是学习和解决问题的重要途径,通过这些资源,开发者可以获得关于MPU6050的详细信息和实践指南
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值