TriangleOct 30 '12
Given a triangle, find the minimum path sum from top to bottom. Each step you may move to adjacent numbers on the row below.
For example, given the following triangle
[
[2],
[3,4],
[6,5,7],
[4,1,8,3]
]
The minimum path sum from top to bottom is 11 (i.e., 2 + 3 + 5 + 1 = 11).
Note:
Bonus point if you are able to do this using only O(n) extra space, where n is the total number of rows in the triangle.
dp
class Solution {
public:
int minimumTotal(vector<vector<int> > &triangle) {
int s = triangle.size();
if (s == 0)return 0;
int *a = new int[s];
memset(a, 0, 4*s);
a[0] = triangle[0][0];
for (int i = 1; i < triangle.size(); ++i) {
a[triangle[i].size() - 1] = a[triangle[i].size()-2] +
triangle[i][triangle[i].size()-1];
for (int j = triangle[i].size()-2; j >=1; --j) {
a[j] = min(a[j-1], a[j]) + triangle[i][j];
}
a[0] += triangle[i][0];
}
int res = a[0];
for (int i = 1; i < s; i++) {
if (res > a[i]) res = a[i];
}
delete []a;
return res;
}
};

本文介绍了一个算法,用于解决从三角形顶部到底部的最小路径和问题。通过动态规划方法,我们可以在O(n)额外空间复杂度下找到最优路径。详细解释了算法实现过程,包括初始化、迭代计算和最终结果的确定。
374

被折叠的 条评论
为什么被折叠?



