MySimpleReadWriteLock

本文介绍了一种简易的读写锁实现方式,通过自定义同步器管理读锁和写锁的状态,确保多线程环境下资源的安全访问。文章详细展示了如何使用 Java 的 `AbstractQueuedSynchronizer` 类来实现自定义的读写锁,并通过测试代码验证其正确性。
import java.util.concurrent.TimeUnit;
import java.util.concurrent.locks.AbstractQueuedSynchronizer;
import java.util.concurrent.locks.Condition;
import java.util.concurrent.locks.Lock;


public class MySimpleReadWriteLock {

	private Syn syn = new Syn();
	private Lock readLock = new ReadLock(syn);
	private Lock writeLock = new WriteLock(syn);

	public MySimpleReadWriteLock() {
		
	}
	
	private static class ReadLock implements Lock {
		final private Syn syn;
		public ReadLock(Syn syn) {
			this.syn = syn;
		}
		@Override
		public void lock() {
			syn.acquireShared(1);
		}
		@Override
		public void lockInterruptibly() throws InterruptedException {
			syn.acquireInterruptibly(1);
		}
		@Override
		public boolean tryLock() {
			return syn.justTryAcquire(1);
		}
		@Override
		public boolean tryLock(long time, TimeUnit unit)
				throws InterruptedException {
			return syn.tryAcquireNanos(1, unit.toNanos(time));
		}
		@Override
		public void unlock() {
			syn.release(1);
		}
		@Override
		public Condition newCondition() {
			return syn.newCondition();
		}
	}
	
	private static class WriteLock implements Lock{
		private final Syn syn;
		public WriteLock(Syn syn) {
			this.syn = syn;
		}
		@Override
		public void lock() {
			syn.acquire(1);
		}
		@Override
		public void lockInterruptibly() throws InterruptedException {
			syn.acquireInterruptibly(1);
		}
		@Override
		public boolean tryLock() {
			return syn.justTryAcquire(1);
		}
		@Override
		public boolean tryLock(long time, TimeUnit unit)
				throws InterruptedException {
			return syn.tryAcquireNanos(1, unit.toNanos(time));
		}
		@Override
		public void unlock() {
			syn.release(1);
		}
		@Override
		public Condition newCondition() {
			return syn.newCondition();
		}
	}

	private static class Syn extends AbstractQueuedSynchronizer {

		private static final long serialVersionUID = 1L;
		private static final int SHARED_SHIFT = 16;
		private static final int SHARED_UNIT = 1 << SHARED_SHIFT;
		private static final int EXCLUSIVE_MASK = (1 << SHARED_SHIFT) - 1;
		private static final HoldCounterThreadLocal LOCAL = new HoldCounterThreadLocal();
		private HoldCounter holdCounter = null;
		
		private static class HoldCounterThreadLocal extends ThreadLocal<HoldCounter>{
			@Override
			protected MySimpleReadWriteLock.Syn.HoldCounter initialValue() {
				return new HoldCounter();
			}
		}
		
		private static class HoldCounter {
			int i = 0;
			long tid = Thread.currentThread().getId();
			public int decrement(int arg) {
				return i-=arg;
			}
			
			public int increment(int acquires) {
				return i+=acquires;
			}
		}

		@Override
		protected int tryAcquireShared(int acquires) {
			int state = super.getState();
			Thread current = Thread.currentThread();
			int exclusiveCount = exclusiveCount(state);
			if(exclusiveCount != 0 && current != getExclusiveOwnerThread()) {//current != getExclusiveOwnerThread()  保证写锁可以让读锁进
				return -1;
			}
			int c = state + (acquires<<SHARED_SHIFT);
			if(compareAndSetState(state, c)) {
				HoldCounter hc = holdCounter;
				if(hc == null || hc.tid != current.getId() ) {//holdCounter.tid != current.getId()  利用的底层的缓存,导致每个线程可能看到的holdCounter是不一样的,很有可能是自己的,也有可能是其他线程的
					holdCounter = hc = LOCAL.get();
				}
				hc.increment(acquires);
				return 1;
			}
			
			return -1;
		}
		private int exclusiveCount(int state) {
			return EXCLUSIVE_MASK & state;
		}

		@Override
		protected boolean tryReleaseShared(int arg) {
			Thread current = Thread.currentThread();
			HoldCounter hc = holdCounter;
			if(hc == null || hc.tid != current.getId()) {
				holdCounter = hc = LOCAL.get();
			}
			if(hc.i-arg < 0)
				throw new IllegalMonitorStateException("release arg is illegal");
			else 
				hc.decrement(arg);
			
			for(;;) {	//独占模式下的release不用for(;;) 因为只要判断了current和exclusiveOwnerThead就可以		 但是共享模式下的,由于release可能会并发执行,需要保证原子操作,就for和cas
				int state = getState();
				int nextc = state - (arg<<SHARED_SHIFT);
				if(compareAndSetState(state, nextc)) {
					return nextc == 0; 
				}
			}
		}

		@Override
		protected boolean tryAcquire(int acquires) {
			return justTryAcquire(acquires);
		}

		private boolean justTryAcquire(int acquires) {
			int state = super.getState();
			int w = exclusiveCount(state);
			Thread current = Thread.currentThread();
			if(state==0) {
				if(super.compareAndSetState(state, state+acquires)) {
					setExclusiveOwnerThread(current);
					return true;
				}
			} else if(w==0 || current!=getExclusiveOwnerThread()) {
				return false;
			} else {
				if(compareAndSetState(state, state+acquires)) {
					return true;
				}
			}
			return false;
		}

		@Override
		protected boolean tryRelease(int arg) {
			Thread current = Thread.currentThread();
			if(current!=getExclusiveOwnerThread()) {
				throw new IllegalMonitorStateException("release error");
			}
			int p = super.getState();
			int c = p-arg;
			if(c==0) {
				setState(c);
				setExclusiveOwnerThread(null);
				return true;
			} else {
				setState(c);
				return false;
			}
		}
		
		public Condition newCondition() {
			return new ConditionObject();
		}

		@Override
		protected boolean isHeldExclusively() {
			return getExclusiveOwnerThread() == Thread.currentThread();
		}
		
	}
	
	public Lock readLock() {
		return readLock;
	}
	
	public Lock writeLock() {
		return writeLock;
	}
	
	public boolean tryLock() {
		return syn.justTryAcquire(1);
	}
	
	public void lock() {
		syn.acquire(1);
	}
	
	public void unlock() {
		syn.release(1);
	}
	
}

 

import java.util.concurrent.locks.Lock;


public class MySimpleRWLockTest {
	static Lock readLock = null;
	static Lock writeLock = null;
	static {
		MySimpleReadWriteLock lock = new MySimpleReadWriteLock();
		readLock = lock.readLock();
		writeLock = lock.writeLock();
	}

	public static void main(String[] args) {
		writeLockTest();
		readLockTest();
	}

	private static void writeLockTest() {
		TestWorker worker = new TestWorker() {
			@Override
			public void exe() {
				System.out.println("..........start write ....");
				writeLock.lock();
				try {
					System.out.println("enter write ....");
					Thread.sleep(2000);
					System.out.println("exit write ....");
				} catch (Exception e) {
				} finally {
					writeLock.unlock();
				}
			}
		};
		worker.printTakeTimeMutil(2);
	}

	private static void readLockTest() {
		TestWorker worker = new TestWorker() {
			@Override
			public void exe() {
				System.out.println("..........start read ....");
				readLock.lock();
				try {
					System.out.println("enter read ....");
					Thread.sleep(1000);
					System.out.println("exit read ....");
				} catch (Exception e) {
				} finally {
					readLock.unlock();
				}
			}
		};
		worker.printTakeTimeMutil(5);
	}

}

..........start write ....

..........start read ....

enter write ....

..........start read ....

..........start write ....

..........start read ....

..........start read ....

..........start read ....

exit write ....

enter read ....

enter read ....

exit read ....

exit read ....

enter write ....

exit write ....

enter read ....

enter read ....

enter read ....

exit read ....

exit read ....

exit read ....

 

【故障诊断】【pytorch】基于CNN-LSTM故障分类的轴承故障诊断研究[西储大学数据](Python代码实现)内容概要:本文介绍了基于CNN-LSTM神经网络模型的轴承故障分类方法,利用PyTorch框架实现,采用西储大学(Case Western Reserve University)公开的轴承故障数据集进行实验验证。该方法结合卷积神经网络(CNN)强大的特征提取能力和长短期记忆网络(LSTM)对时序数据的建模优势,实现对轴承不同故障类型和严重程度的高精度分类。文中详细阐述了数据预处理、模型构建、训练流程及结果分析过程,并提供了完整的Python代码实现,属于典型的工业设备故障诊断领域深度学习应用研究。; 适合人群:具备Python编程基础和深度学习基础知识的高校学生、科研人员及工业界从事设备状态监测与故障诊断的工程师,尤其适合正在开展相关课题研究或希望复现EI级别论文成果的研究者。; 使用场景及目标:① 学习如何使用PyTorch搭建CNN-LSTM混合模型进行时间序列分类;② 掌握轴承振动信号的预处理与特征学习方法;③ 复现并改进基于公开数据集的故障诊断模型,用于学术论文撰写或实际工业场景验证; 阅读建议:建议读者结合提供的代码逐行理解模型实现细节,重点关注数据加载、滑动窗口处理、网络结构设计及训练策略部分,鼓励在原有基础上尝试不同的网络结构或优化算法以提升分类性能。
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值