A new approach to china

谷歌近期遭受了来自中国的高度复杂的网络攻击,导致部分知识产权被盗。此外,至少20家跨行业公司也遭受了类似攻击。攻击者的目标之一是获取中国人权活动家的Gmail账户信息。谷歌正在与受影响公司及美国当局合作,并考虑调整其在中国的运营策略。
1/12/2010 03:00:00 PM

Like many other well-known organizations, we face cyber attacks of varying degrees on a regular basis. In mid-December, we detected a highly sophisticated and targeted attack on our corporate infrastructure originating from China that resulted in the theft of intellectual property from Google. However, it soon became clear that what at first appeared to be solely a security incident--albeit a significant one--was something quite different.

First, this attack was not just on Google. As part of our investigation we have discovered that at least twenty other large companies from a wide range of businesses--including the Internet, finance, technology, media and chemical sectors--have been similarly targeted. We are currently in the process of notifying those companies, and we are also working with the relevant U.S. authorities.

Second, we have evidence to suggest that a primary goal of the attackers was accessing the Gmail accounts of Chinese human rights activists. Based on our investigation to date we believe their attack did not achieve that objective. Only two Gmail accounts appear to have been accessed, and that activity was limited to account information (such as the date the account was created) and subject line, rather than the content of emails themselves.

Third, as part of this investigation but independent of the attack on Google, we have discovered that the accounts of dozens of U.S.-, China- and Europe-based Gmail users who are advocates of human rights in China appear to have been routinely accessed by third parties. These accounts have not been accessed through any security breach at Google, but most likely via phishing scams or malware placed on the users' computers.

We have already used information gained from this attack to make infrastructure and architectural improvements that enhance security for Google and for our users. In terms of individual users, we would advise people to deploy reputable anti-virus and anti-spyware programs on their computers, to install patches for their operating systems and to update their web browsers. Always be cautious when clicking on links appearing in instant messages and emails, or when asked to share personal information like passwords online. You can read more here about our cyber-security recommendations. People wanting to learn more about these kinds of attacks can read this U.S. government report (PDF), Nart Villeneuve's blog and this presentation on the GhostNet spying incident.

We have taken the unusual step of sharing information about these attacks with a broad audience not just because of the security and human rights implications of what we have unearthed, but also because this information goes to the heart of a much bigger global debate about freedom of speech. In the last two decades, China's economic reform programs and its citizens' entrepreneurial flair have lifted hundreds of millions of Chinese people out of poverty. Indeed, this great nation is at the heart of much economic progress and development in the world today.

We launched Google.cn in January 2006 in the belief that the benefits of increased access to information for people in China and a more open Internet outweighed our discomfort in agreeing to censor some results. At the time we made clear that "we will carefully monitor conditions in China, including new laws and other restrictions on our services. If we determine that we are unable to achieve the objectives outlined we will not hesitate to reconsider our approach to China."

These attacks and the surveillance they have uncovered--combined with the attempts over the past year to further limit free speech on the web--have led us to conclude that we should review the feasibility of our business operations in China. We have decided we are no longer willing to continue censoring our results on Google.cn, and so over the next few weeks we will be discussing with the Chinese government the basis on which we could operate an unfiltered search engine within the law, if at all. We recognize that this may well mean having to shut down Google.cn, and potentially our offices in China.

The decision to review our business operations in China has been incredibly hard, and we know that it will have potentially far-reaching consequences. We want to make clear that this move was driven by our executives in the United States, without the knowledge or involvement of our employees in China who have worked incredibly hard to make Google.cn the success it is today. We are committed to working responsibly to resolve the very difficult issues raised.

象许多其他著名组织,我们面对不同的定期度网络攻击。 12月中旬,我们发现在我们的公司从中国,在由谷歌侵犯了知识产权,导致原基础设施非常复杂和具有针对性的攻击。 然而,很快就清楚地知道在第一次出现是单纯的安全事件 - 尽管是重要的一项 - 是完全是另外一回事。

首先,这次袭击不只是谷歌。 作为我们调查的一部分,我们发现,至少有20等大公司从业务范围广泛 - 包括互联网,金融,技术,媒体和化工等领域 - 也遭受了同样的目标。 我们目前还在通知这些公司的过程中,我们也与美国有关当局的工作。

第二,我们有证据表明,一个攻击者的主要目的是访问的中国人权活动的Gmail帐户。 根据我们调查,迄今为止,我们相信他们的进攻并没有实现这一目标。 只有两个Gmail帐户似乎已被访问,而这一活动仅限于帐户信息(如日期的帐户已创建)和主题行,而不是自己的电子邮件内容。

第三,这项调查的,但对谷歌攻击独立的一部分,我们发现,美几十个帐户,中国和欧洲的Gmail用户谁是在中国人权倡导者看来是例行访问的 第三方。 这些帐户还没有被访问的谷歌通过任何安全漏洞,但大多数通过网路钓鱼或恶意软件在用户的电脑上的可能。

我们已经使用的信息,从这次袭击,使获得基础设施和建筑改进,提高安全性和谷歌为我们的用户。 在个人用户方面,我们会建议人们在电脑上部署知名反病毒和反间谍软件程序,为他们安装操作系统补丁,并更新其网络浏览器。 一直很小心,在即时消息和电子邮件,或要求分享的个人信息如密码的网络版上点击链接。 你可以在这里阅读更多关于我们的网络安全的建议。 人们想要了解这些类型的攻击更可以阅读这个美国政府的报告(PDF格式),纳尔特维伦纽夫的博客,这对GhostNet介绍间谍事件。

我们已采取了交流有关的不只是因为安全和人权,我们有什么影响,广大观众发现这些攻击的信息不寻常的步骤,而且还因为这些信息转到了一个更大的关于全球自由辩论的核心 讲话。 在过去二十年里,中国的经济改革计划和公民'的企业精神已经脱离了贫困亿万中华儿女。 事实上,这个伟大的国家,是今天在许多经济进步和世界发展的核心。

我们相信推出Google.cn认为提高了对中国人民在一个更加开放的互联网信息的好处抵销同意审查结果,我们的一些不适,在2006年1月。 当时,我们明确指出,“我们将密切注视中国的条件,包括新的法律和对我们服务的其他限制。如果我们决定,我们无法达到目标所确定的,我们将毫不犹豫地重新考虑对中国的态度。”

这些袭击,他们已经发现监视 - 与在过去一年企图进一步限制网上言论自由的结合 - 已经导致我们得出结论,我们应该检讨我们在中国业务的可行性。 我们已经决定,我们不再愿意继续在Google.cn封杀我们的业绩,所以在未来,我们将与我国政府的基础上,我们可以在法律范围内运作,未经过滤的搜索引擎,讨论如果在几个星期 全部。 我们认识到,这很可能意味着必须关闭Google.cn,并有可能我们在中国的办事处。

审查的决定,在中国的业务一直非常努力,我们知道这将有可能影响深远的后果。 我们要明确,这一举措,主要是因为在美国我们的管理人员不知情或在中国的员工参与,谁工作非常努力,使Google.cn成就的今天。 我们正致力于负责任地解决提出的问题非常困难。

发布者大卫德鲁蒙德,高级副总裁,企业发展和首席法律官

这是一篇关于人工智能方向的论文初稿,请帮我完善其中的各个部分。 标题:A Physics-Informed Multi-Modal Fusion Approach for Intelligent Assessment and Life Prediction of Geomembrane Welds in High-Altitude Environments 摘要: The weld seam is the most critical yet vulnerable part of a geomembrane anti-seepage system in high-altitude environments. Traditional assessment methods struggle with inefficiency and an inability to characterize internal defects, while existing prediction models fail to capture the complex degradation mechanisms under multi-field coupling conditions. This study proposes a novel physics-informed deep learning framework for the intelligent assessment and life prediction of geomembrane welds. First, a multi-modal sensing system integrating vision, thermal, and ultrasound is developed to construct a comprehensive weld defect database. Subsequently, a Physics-Informed Attention Fusion Network (PIAF-Net) is proposed, which embeds physical priors (e.g., the oxidation sensitivity of the Heat-Affected Zone) into the attention mechanism to guide the fusion of heterogeneous information, achieving an accuracy of 94.7% in defect identification with limited samples. Furthermore, a Physics-Informed Neural Network with Uncertainty Quantification (PINN-UQ) is established for long-term performance prediction. By hard-constraining the network output with oxidation kinetics and damage evolution equations, and incorporating a Bayesian uncertainty quantification framework, the model provides probabilistic predictions of the remaining service life. Validation results from both laboratory and a case study at the Golmud South Mountain Pumped Storage Power Station (over 3500m altitude) demonstrate the high accuracy (R² > 0.96), robustness, and physical consistency of the proposed framework, offering a groundbreaking tool for the predictive maintenance of critical infrastructure in extreme environments. 关键词: Geomembrane Weld; Multi-Modal Fusion; Physics-Informed Neural Network; Defect Assessment; Life Prediction; High-Altitude Environment 1. Introduction High-density polyethylene (HDPE) geomembranes are pivotal as impermeable liners in major water conservancy projects, such as pumped storage power stations in high-altitude regions of western China [1, 2]. However, the long-term performance and sealing reliability of the entire system are predominantly determined by the quality of the field welds, which are subjected to extreme environmental stresses including low temperature, intense ultraviolet (UV) radiation, significant diurnal temperature cycles, and strong windblown sand [3, 4]. Statistics indicate that over 80% of geomembrane system failures originate from weld seams [5], highlighting them as the primary薄弱环节 (weak link). Current non-destructive evaluation (NDE) methods, such as air pressure testing and spark testing, are largely qualitative, inefficient, and incapable of identifying internal flaws like incomplete fusion [6, 7]. While some researchers have begun exploring machine learning and deep learning for automated defect recognition [8, 9], these data-driven approaches often suffer from two fundamental limitations: (1) a lack of physical interpretability, making their predictions untrustworthy for high-stakes engineering decisions, and (2) poor generalization performance under "small-sample" conditions typical of specialized weld defects [10]. For long-term performance prediction, the classical Arrhenius model remains the most common tool but is primarily suited for homogeneous materials under constant, single-factor thermal aging [11, 12]. It fails to account for the significant microstructural heterogeneity, residual stresses, and the synergistic effects of multi-field coupling inherent in weld seams under real-world high-altitude service conditions [13, 14]. Pure data-driven models like Gaussian Process Regression (GPR) or standard Neural Networks (NNs), while flexible, often exhibit high extrapolation risks and lack physical consistency [15]. To bridge these gaps, this study introduces a physics-informed deep learning framework that seamlessly integrates physical knowledge with data-driven models. The main contributions are threefold: We propose a Physics-Informed Attention Fusion Network (PIAF-Net) that leverages physical priors derived from material aging mechanisms to guide the fusion of multi-modal NDE data, significantly enhancing defect identification accuracy and interpretability under small-sample constraints. We develop a Physics-Informed Neural Network with Uncertainty Quantification (PINN-UQ) for life prediction, which embds oxidation kinetics and damage mechanics laws directly into the loss function, ensuring physical plausibility while providing probabilistic life predictions through a Bayesian framework. We validate the proposed framework rigorously through independent laboratory tests and a real-world engineering case study at a high-altitude pumped storage power station, demonstrating its superior performance, robustness, and practical engineering value. 2. Methodology The overall framework of the proposed methodology is illustrated in Fig. 1, comprising three main stages: multi-modal data acquisition, intelligent defect assessment, and physics-informed life prediction. 2.1 Multi-Modal Data Acquisition and Database Construction A synchronized multi-sensor data acquisition system was developed, comprising: Vision Module: A 5-megapixel CCD camera with uniform LED lighting to capture high-resolution surface images. Features like Local Binary Patterns (LBP), Histogram of Oriented Gradients (HOG), and morphological parameters (weld width uniformity, edge straightness) were extracted. Thermal Module: A mid-wave infrared thermal camera (100 Hz) recorded the dynamic temperature field during the natural cooling of the weld. Key features included cooling rate and temperature distribution uniformity. Ultrasound Module: A high-frequency ultrasonic probe using pulse-echo mode acquired A-scan signals. Features such as sound velocity, attenuation coefficient, and spectral centroid were derived to characterize internal fusion status. A comprehensive weld defect database was constructed, containing 600 samples covering various process defects (virtual weld, over-weld, weak weld, contamination) and aging states (0h, 500h, 1500h of accelerated multi-field coupling aging). 2.2 Physics-Informed Attention Fusion Network (PIAF-Net) for Defect Assessment The architecture of PIAF-Net is shown in Fig. 2. It consists of a dual-stream feature extraction module and a novel physics-informed attention fusion module. *2.2.1 Dual-Stream Feature Extraction* One stream processes appearance information (visual + thermal features) using a pre-trained CNN (e.g., VGG16) and a custom 3D CNN, respectively. The other stream processes internal information (ultrasonic features) using a 1D CNN. This separation allows for dedicated feature abstraction from different physical domains. *2.2.2 Physics-Informed Attention Fusion Module* Instead of learning attention weights purely from data, this module incorporates physical priors p p (e.g., known correlations between ultrasonic signal attenuation and internal lack of fusion, or between abnormal cooling rates and over-weld-induced grain coarsening). The attention weight a i a i ​ for the i i-th modality is computed as: a i = softmax ( ( W p ⋅ p ) ⊙ ( W f ⋅ f i ) ) a i ​ =softmax((W p ​ ⋅p)⊙(W f ​ ⋅f i ​ )) where f i f i ​ is the feature vector, W p W p ​ and W f W f ​ are learnable projection matrices, and ⊙ ⊙ denotes element-wise multiplication. This design forces the model to focus on feature combinations that are physically meaningful. *2.2.3 Meta-Learning for Small-Sample Training* To address the limited defect samples, a Model-Agnostic Meta-Learning (MAML) paradigm was adopted. The model is trained on a multitude of N-way K-shot tasks, enabling it to rapidly adapt to new, unseen defect types with very few examples. 2.3 Physics-Informed Neural Network with Uncertainty Quantification (PINN-UQ) for Life Prediction The PINN-UQ model integrates physical laws governing weld degradation, as summarized from accelerated aging tests (see Fig. 3 for the conceptual physical model). 2.3.1 Physical Mechanism Module The degradation is modeled through a coupled chemical and mechanical process: Non-Homogeneous Oxidation Kinetics: d α d t = A ⋅ f ( C I 0 , T weld ) ⋅ exp ⁡ ( − E a R T ) ⋅ ( 1 − α ) n ⋅ g ( I U V ) dt dα ​ =A⋅f(CI 0 ​ ,T weld ​ )⋅exp(− RT E a ​ ​ )⋅(1−α) n ⋅g(I UV ​ ) where α α is the aging degree, f ( C I 0 , T weld ) f(CI 0 ​ ,T weld ​ ) is a spatial function accounting for initial antioxidant depletion in the Heat-Affected Zone (HAZ), and g ( I U V ) g(I UV ​ ) is the UV intensity function. Damage Evolution Model: d D d t = C 1 ⋅ ( σ eff σ 0 ) m ⋅ N f + C 2 ⋅ ( Abrasion ) dt dD ​ =C 1 ​ ⋅( σ 0 ​ σ eff ​ ​ ) m ⋅N f ​ +C 2 ​ ⋅(Abrasion) where D D is the damage variable, σ eff σ eff ​ is the equivalent thermal stress from temperature cycles, and N f N f ​ is the cycle count. Macroscopic Performance Coupling: P = P 0 ⋅ ( 1 − α ) β ⋅ ( 1 − D ) γ P=P 0 ​ ⋅(1−α) β ⋅(1−D) γ where P P is a macroscopic property (e.g., tensile strength), and β , γ β,γ are coupling coefficients. *2.3.2 PINN-UQ Architecture and Hybrid Loss Function* The network input is the multi-modal feature sequence X fusion ( t ) X fusion ​ (t) and environmental stress data. Crucially, the network's final layer outputs the physical state variables α α and D D, not the performance P P directly. The predicted performance P pred P pred ​ is then calculated using the physical equation above, enforcing physical consistency. The hybrid loss function is defined as: L total = L data + λ ⋅ L physics L total ​ =L data ​ +λ⋅L physics ​ L data = 1 N ∑ i = 1 N ( P pred , i − P meas , i ) 2 L data ​ = N 1 ​ i=1 ∑ N ​ (P pred,i ​ −P meas,i ​ ) 2 L physics = 1 N ∑ i = 1 N [ ( d α d t − R α ) 2 + ( d D d t − R D ) 2 ] L physics ​ = N 1 ​ i=1 ∑ N ​ [( dt dα ​ −R α ​ ) 2 +( dt dD ​ −R D ​ ) 2 ] where R α R α ​ and R D R D ​ are the right-hand sides of the oxidation and damage evolution equations, computed via automatic differentiation. 2.3.3 Uncertainty Quantification Framework A Bayesian Neural Network (BNN) with Monte Carlo (MC) Dropout is employed to quantify both epistemic (model) and aleatoric (data) uncertainties. The predictive distribution is obtained by performing M M stochastic forward passes, providing the mean prediction and its confidence interval. 3. Results and Discussion 3.1 Performance of PIAF-Net for Defect Assessment The performance of PIAF-Net was evaluated using 5-fold cross-validation and compared against baseline models on the same dataset (Table 1). Table 1. Performance comparison of different models for weld defect identification (Mean ± Std). Model Accuracy (%) Precision (%) Recall (%) F1-Score Vision Only (CNN) 85.3 ± 1.5 84.1 ± 2.1 83.7 ± 1.8 0.839 Thermal Only (3D-CNN) 80.2 ± 2.1 79.5 ± 2.8 78.9 ± 2.5 0.792 Simple Feature Concatenation 90.5 ± 1.2 89.8 ± 1.5 89.4 ± 1.7 0.896 PIAF-Net (Proposed) 95.8 ± 0.8 95.2 ± 1.0 94.9 ± 1.1 0.951 PIAF-Net significantly outperformed all single-modality and simple fusion models, demonstrating the effectiveness of physics-guided attention. The t-SNE visualization (Fig. 4a) showed clear clustering of different defect types in the learned feature space, with samples of the same defect type forming continuous trajectories reflecting severity, indicating the model captured physically meaningful representations. 3.2 Performance and Analysis of PINN-UQ for Life Prediction The PINN-UQ model was trained on data from multi-field coupled aging tests and tested on an independent validation set. Fig. 4b shows the model's prediction of tensile strength degradation under full coupling conditions, alongside the 95% confidence interval. The prediction mean (red line) closely matches the experimental measurements (black dots), with a high R² value of 0.963 and a low RMSE of 1.18 MPa. The 95% confidence interval (blue shaded area) effectively encapsulates the dispersion of the experimental data, especially during the accelerated degradation phase after 1500 hours, quantitatively reflecting prediction uncertainty. Analysis of the internally predicted physical variables α α and D D revealed that the aging degree in the HAZ evolved much faster than in the parent material, aligning perfectly with micro-FTIR observations from our mechanistic studies (Chapter 2 of the thesis). This emergent behavior, enforced by the physical constraints, confirms the model's physical consistency. 3.3 Engineering Application and Validation The framework was applied to assess welds that had been in service for 3 years at the Golmud South Mountain Pumped Storage Power Station. PIAF-Net successfully identified two welds with "weak weld" characteristics from 15 in-situ inspections, which were later confirmed by destructive tests to have substandard peel strength. For life prediction, the PINN-UQ model, taking the field-derived features and local environmental spectrum as input, predicted a mean remaining service life of 42 years with a 95% confidence interval of [35, 51] years for the welds. The model also identified the HAZ as the life-limiting factor, providing critical guidance for targeted maintenance. 4. Discussion The superior performance of the proposed framework stems from its deep integration of physical knowledge. In PIAF-Net, the physical priors act as an expert guide, steering the model away from spurious correlations and towards physically plausible feature interactions, which is crucial for generalization with small samples. In PINN-UQ, the physical laws serve as a powerful regularizer, constraining the solution space to physically admissible trajectories. This not only improves extrapolation but also imbues the model with a degree of interpretability often missing in pure "black-box" models. The probabilistic output provided by the UQ framework is of paramount practical importance. It transforms a single-point life estimate into a risk-informed decision support tool, allowing engineers to plan maintenance based on conservative lower-bound estimates (e.g., 35 years) or to assess the probability of failure within a design lifetime. 5. Conclusion This study has developed and validated a novel physics-informed deep learning framework for the intelligent assessment and life prediction of geomembrane welds in high-altitude environments. The main conclusions are: The proposed PIAF-Net model, by embedding physical priors into the attention mechanism, achieves high-accuracy (95.8%), interpretable defect identification with limited labeled data, overcoming the limitations of traditional methods and pure data-driven models. The PINN-UQ model successfully integrates the physics of weld degradation into a data-driven framework, providing accurate (R² > 0.96), physically consistent, and probabilistic predictions of long-term performance and remaining service life. The successful application in a real-world high-altitude engineering case demonstrates the framework's robustness and practical value, paving the way for a paradigm shift from experience-based and reactive maintenance towards model-guided and predictive management of critical infrastructure. Acknowledgments (This section will be completed as needed) References [1] Koerner, R. M., & Koerner, G. R. (2018). Journal of Geotechnical and Geoenvironmental Engineering, 144(6), 04018029. [2] Rowe, R. K. (2020). Geotextiles and Geomembranes, 48(4), 431-446. [3] ... (Other references will be meticulously added from the thesis and relevant literature)
最新发布
11-29
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值