import java.util.Random; import java.util.concurrent.CyclicBarrier; /** * CyclicBarrier类似于CountDownLatch也是个计数器, * 不同的是CyclicBarrier数的是调用了CyclicBarrier.await()进入等待的线程数, * 当线程数达到了CyclicBarrier初始时规定的数目时,所有进入等待状态的线程被唤醒并继续。 * CyclicBarrier就象它名字的意思一样,可看成是个障碍, * 所有的线程必须到齐后才能一起通过这个障碍。 * CyclicBarrier初始时还可带一个Runnable的参数, * 此Runnable任务在CyclicBarrier的数目达到后,所有其它线程被唤醒前被执行。 */ public class CyclicBarrierTest { public static class ComponentThread implements Runnable { CyclicBarrier barrier;// 计数器 int ID; // 组件标识 int[] array; // 数据数组 // 构造方法 public ComponentThread(CyclicBarrier barrier, int[] array, int ID) { this.barrier = barrier; this.ID = ID; this.array = array; } public void run() { try { array[ID] = new Random().nextInt(100); System.out.println("Component " + ID + " generates: " + array[ID]); // 在这里等待Barrier处 System.out.println("Component " + ID + " sleep..."); barrier.await(); System.out.println("Component " + ID + " awaked..."); // 计算数据数组中的当前值和后续值 int result = array[ID] + array[ID + 1]; System.out.println("Component " + ID + " result: " + result); } catch (Exception ex) { } } } /** * 测试CyclicBarrier的用法 */ public static void testCyclicBarrier() { final int[] array = new int[3]; CyclicBarrier barrier = new CyclicBarrier(2, new Runnable() { // 在所有线程都到达Barrier时执行 public void run() { System.out.println("testCyclicBarrier run..."); array[2] = array[0] + array[1]; } }); // 启动线程 new Thread(new ComponentThread(barrier, array, 0)).start(); new Thread(new ComponentThread(barrier, array, 1)).start(); } public static void main(String[] args) { CyclicBarrierTest.testCyclicBarrier(); } }