isatty(STDIN_FILENO)详解

本文介绍了isatty()函数的实现原理及其应用场景,该函数用于判断指定的文件描述符是否指向一个终端设备。此外,还解释了标准输入文件描述符STDIN_FILENO的概念及其在POSIX系统中的作用。
部署运行你感兴趣的模型镜像

关于函数 isatty( )

#include <unistd.h>
int isatty(int filedes);
返回值:若为终端设备则返回1(真),否则返回0(假)

如下程序,isatty函数的实现只使用了一个终端专用的函数 tcgetattr (如果成功执行,它不改变任何东西),并取其返回值。
#include <termios.h>
int isatty(int fd)
{
struct termios ts;
return(tcgetattr(fd,&ts) != -1); /*如果不出错为真(是一个终端设备)*/
}

关于STDIN_FILENO

对 一个进程预定义了三个流,并且这三个流可以自动地被进程使用,它们是:标准输入、标准输出和标准出错。UNIX系统shell使用文件描述符0与进程的标 准输入相关联,文件描述符1与标准输出相关联,文件描述符2与标准出错相关联。这是各种shell以及很多应用程序使用的惯例,而与UNIX内核无关。尽 管如此,如果不遵照这种惯例,那么很多UNIX系统应用程序就不能正常工作。
在依从POSIX的应用程序中,幻数0、1、2应当替换成符号常量STDIN_FILENO、STDOUT_FILENO和STDERR_FILENO。这些常量都定义在头文件<unistd.h>中。

关于IEEE POSIX

POSIX 是一系列有IEEE(Institute of Electrical and Electronics Engineers,电气与电子工程师协会)制定的标准。POSIX指的是可移植的操作系统接口(Portable Operating System Interface)。它原来指的只是IEEE标准1003.1-1998(操作系统接口),后来则扩展成包括很多标记为1003的标准及标准草案,包括 shell和实用程序(1003.2
)。


您可能感兴趣的与本文相关的镜像

Stable-Diffusion-3.5

Stable-Diffusion-3.5

图片生成
Stable-Diffusion

Stable Diffusion 3.5 (SD 3.5) 是由 Stability AI 推出的新一代文本到图像生成模型,相比 3.0 版本,它提升了图像质量、运行速度和硬件效率

#pragma region #include <iostream> #include <opencv4/opencv2/core/core.hpp> #include <opencv4/opencv2/highgui.hpp> #include <opencv4/opencv2/opencv.hpp> #include <opencv4/opencv2/imgproc/types_c.h> #include "pigpio.h" #include <thread> #include <cmath> #include <chrono> #include <time.h> #include <stdio.h> #include <stdlib.h> #include <fcntl.h> #include <unistd.h> #include <assert.h> #include <termios.h> #include <string.h> #include <sys/time.h> #include <time.h> #include <sys/types.h> #include <errno.h> #include <signal.h> using namespace std; using namespace cv; #pragma endregion #define BAUD 9600//串口波特率 #pragma region int MAX_YU = 140; int MIN_YU = 60; // PID 各个数值 float kr = 0.00000001, kl = -0.0000001, lr = 0, ll = 0, br, bl; bool flag_avoid = false; // 躲避锥桶标志位 bool flag_zhang = false; // 未知 bool flag_voidcount = false; // 未知 bool flag_ren = false; // 人行道判断标志位 bool flag_yellow = false; double limit_voidtime = 0.17; bool flag_start; // 判断蓝色挡板标志位 bool flag_count; // 未知 double time_void = 100; // 未知 double angle; // 计算得到的角度 double angle_bi; // 避障角度 double angle_cover; //?????????? double speed_avoid = 10050; //??????? // double speed_delay = 10200;//????????????????? double heigth; double kuan; double low = 0, high = 0; Mat kernel_3 = Mat::ones(cv::Size(3, 3), CV_8U); Mat kernel = getStructuringElement(MORPH_RECT, Size(1, 1)); int shu = 0; int sum_avoid = 0; double width, x_r, x_l; //,heigth; //Mat frame, ca; static int ret; static int GPS; char r_buf[1024]; FILE* fp; double angle_x = 0; //???????y?? float a[3], w[3], Angle[3], h[3]; int flag_picture, duo_flag; // Rect list;cd ~ clock_t start_, end_, mid_time; static void on(int, void*); //double picture(); void GetROI(Mat src, Mat& ROI); double PID(double error1); vector<Point2f> get_lines_fangcheng(vector<Vec4i> lines); void Set_gpio(); Rect Obstacles(Mat img); Rect blue(Mat img); // 识别蓝色挡板 Rect yellow(Mat img); // 识别黄色挡板 string str = "sudo cp /home/pi/.Xauthority /root/"; int flag = system(str.c_str()); #pragma endregion //5G Mat img, img_HSV, img_HSV_mask, img_combined, img_per, img_clone, warped, frame; int start_flag = 1, find_blue_card_flag = 0, cross_flag = 0, music_flag = 0, avoid_flag = 0, car_blake_flag = 0; int LAB_Bmin = 190, LAB_Bmax = 255, HSL_Lmin = 157, HSL_Lmax = 255; int TIMECOUNT = 0; //定时器延时 int line_error = 0, line_error1 = 0, line_last_error = 0, line_last_error1 = 0; float center_x = 0, left_x = 0, right_x = 0; int line_y = 190; int rail_width_pix = 56;//跑道一半宽度 Point mousePos(0, 0); double kp = 0.28; // 0.155;//0.11?????;//0.16;//0.2;//0.3;//0.1???? 0.3???? double kd = 0.04; // 0.1;//0 ????? double kp1 = 0.25, kd1 = 0.02; double min_angle = 30; // 80 90 - 10 double max_angle = 30; // 100 int Angle_Z; enum class AvoidanceState { TRACKING, // 正常循迹状态 AVOIDING, // 避障中 RETURNING // 回归跑道中 }; AvoidanceState current_state = AvoidanceState::TRACKING; chrono::steady_clock::time_point avoidance_start_time; const int AVOIDANCE_DURATION = 1500; // 避障动作持续时间(毫秒) void cd(char* path) { chdir(path); } bool crossing(Mat image) { Mat roi, labels, stats, centroids, hui; GetROI(image, roi); //imshow("roi", roi); cvtColor(roi, hui, COLOR_BGR2GRAY); Mat binaryImage; threshold(hui, binaryImage, 180, 255, cv::THRESH_BINARY); imshow("binaryImage", binaryImage); int numComponents = cv::connectedComponentsWithStats(binaryImage, labels, stats, centroids); int crossingnum = 0; for (int i = 1; i < numComponents; i++) { int area = stats.at<int>(i, cv::CC_STAT_AREA); if (area > 200) { crossingnum++; } // cout<<area<<endl; } cout << "CrossingNum:" << crossingnum << endl; if (crossingnum >= 4) { cout << "find crossing" << endl; return true; } return false; } void gpio_init(void) { if (gpioInitialise() < 0) exit(1); gpioSetMode(13, PI_OUTPUT); gpioSetPWMrange(13, 40000); gpioSetPWMfrequency(13, 200); gpioPWM(13, 12000); gpioDelay(1000000); gpioSetMode(22, PI_OUTPUT); gpioSetPWMfrequency(22, 50); gpioSetPWMrange(22, 1000); gpioPWM(22, 75); // gpioSetMode(23, PI_OUTPUT); gpioSetPWMfrequency(23, 50); gpioSetPWMrange(23, 1000); gpioPWM(23, 70); //大上下小 gpioSetMode(12, PI_OUTPUT); // 设置GPIO12为PWM输出 gpioSetPWMfrequency(12, 50); // 50Hz标准频率 gpioSetPWMrange(12, 30000); // 设置PWM范围 printf("GPIO initial successful"); } void steering(int angle) { double value = (0.5 + (2.0 / 180.0) * angle) / 20 * 30000; // 100;//20000 gpioPWM(12, value); } void Start_motor(void) { cout << "1" << endl; gpioPWM(13, 10600); //gpioDelay(1000000); /*for (int x = 12000; x >= 9000; x -= 300) { cout << x << endl; gpioPWM(13, x); gpioDelay(500000); }*/ // 第二次启动时,可以注释掉 下面部分 //cout << "2" << endl; //gpioPWM(13, 12000); //gpioDelay(1000000); // 到此为止 //cout << "3" << endl; //gpioPWM(13, 11000); //gpioDelay(1000000); //cout << "4" << endl; //gpioPWM(13, 10300); //double value = speed_init; // ???动慢??? //gpioPWM(13, value); } void Control_stop(void) { gpioPWM(13, 12600); // 刹车 gpioDelay(50000); gpioPWM(13, 12200); // 保护 //gpioDelay(3000000); //gpioPWM(13, speed_mid); // 冲刺 } int uart_open(int fd, const char* pathname) { fd = open(pathname, O_RDWR | O_NOCTTY); if (-1 == fd) { perror("Can't Open Serial Port"); return(-1); } else printf("open %s success!\n", pathname); if (isatty(STDIN_FILENO) == 0) printf("standard input is not a terminal device\n"); else printf("isatty success!\n"); return fd; } int uart_set(int fd, int nSpeed, int nBits, char nEvent, int nStop) { struct termios newtio, oldtio; if (tcgetattr(fd, &oldtio) != 0) { perror("SetupSerial 1"); printf("tcgetattr( fd,&oldtio) -> %d\n", tcgetattr(fd, &oldtio)); return -1; } bzero(&newtio, sizeof(newtio)); newtio.c_cflag |= CLOCAL | CREAD; newtio.c_cflag &= ~CSIZE; switch (nBits) { case 7: newtio.c_cflag |= CS7; break; case 8: newtio.c_cflag |= CS8; break; } switch (nEvent) { case 'o': case 'O': newtio.c_cflag |= PARENB; newtio.c_cflag |= PARODD; newtio.c_iflag |= (INPCK | ISTRIP); break; case 'e': case 'E': newtio.c_iflag |= (INPCK | ISTRIP); newtio.c_cflag |= PARENB; newtio.c_cflag &= ~PARODD; break; case 'n': case 'N': newtio.c_cflag &= ~PARENB; break; default: break; } /*设置波特率*/ switch (nSpeed) { case 2400: cfsetispeed(&newtio, B2400); cfsetospeed(&newtio, B2400); break; case 4800: cfsetispeed(&newtio, B4800); cfsetospeed(&newtio, B4800); break; case 9600: cfsetispeed(&newtio, B9600); cfsetospeed(&newtio, B9600); break; case 115200: cfsetispeed(&newtio, B115200); cfsetospeed(&newtio, B115200); break; case 460800: cfsetispeed(&newtio, B460800); cfsetospeed(&newtio, B460800); break; default: cfsetispeed(&newtio, B9600); cfsetospeed(&newtio, B9600); break; } if (nStop == 1) newtio.c_cflag &= ~CSTOPB; else if (nStop == 2) newtio.c_cflag |= CSTOPB; newtio.c_cc[VTIME] = 0; newtio.c_cc[VMIN] = 0; tcflush(fd, TCIFLUSH); if ((tcsetattr(fd, TCSANOW, &newtio)) != 0) { perror("com set error"); return -1; } printf("set done!\n"); return 0; } int uart_close(int fd) { assert(fd); close(fd); return 0; } int send_data(int fd, char* send_buffer, int length) { length = write(fd, send_buffer, length * sizeof(unsigned char)); return length; } int recv_data(int fd, char* recv_buffer, int length) { length = read(fd, recv_buffer, length); return length; } void Control_Xun(void) { int angle = kp * line_error + kd * (line_error - line_last_error); line_last_error = line_error; angle = 90 - angle; if (angle > 90 + max_angle) // 130 angle = 90 + max_angle; if (angle < 90 - min_angle) angle = 90 - min_angle; //cout <<"line_error"<<line_error<<"angle:" << angle << endl; //cout << "循迹处理完毕" << endl; steering(angle); } //void Control_avoid(void) { // const int DEAD_ZONE = 30; // 中心死区阈值(像素) // const int AVOID_ANGLE_OFFSET = 25; // 避让角度偏移量 // // // 1. 计算基础转向角度(PD控制) // // 注意:根据转向特性调整符号(angle越大越左转) // int angle = 90 + (kp1 * line_error1 + kd1 * (line_error1 - line_last_error1)); // line_last_error1 = line_error1; // // 2. 中心区域强制避让(关键修正) // if (abs(line_error1) < DEAD_ZONE) { // // 修正避让方向判断逻辑 // // 锥桶在右侧(line_error1 > 0):需要向左避让(增大角度) // // 锥桶在左侧(line_error1 < 0):需要向右避让(减小角度) // if (line_error1 > 0) { // angle = 90 + AVOID_ANGLE_OFFSET; // 向左避让 // } // else { // angle = 90 - AVOID_ANGLE_OFFSET; // 向右避让 // } // } // // // 3. 角度限幅保护(根据转向特性调整) // // 角度限幅在60-120度范围(90°为直行) // if (angle > 98) angle = 98; // 最大左转限制 // if (angle < 82) angle = 82; // 最大右转限制 // // cout << "avoid_angle:" << angle << endl; // steering(angle); //} // 修改Control_avoid函数,添加跑道保持逻辑 void Control_avoid(void) { const int DEAD_ZONE = 30; // 中心死区阈值(像素) const int AVOID_ANGLE_OFFSET = 25; // 避让角度偏移量 // 1. 获取当前跑道中心线偏差(来自循迹模块) int track_error = line_error; // 循迹偏差 // 2. 状态机控制 int base_angle = 90; switch (current_state) { case AvoidanceState::TRACKING: // 正常循迹控制 base_angle = 90 + (kp1 * track_error + kd1 * (track_error - line_last_error)); line_last_error = track_error; break; case AvoidanceState::AVOIDING: { // 避障控制逻辑 base_angle = 90 + (kp1 * line_error1 + kd1 * (line_error1 - line_last_error1)); line_last_error1 = line_error1; // 中心区域强制避让 if (abs(line_error1) < DEAD_ZONE) { if (line_error1 > 0) { base_angle = 90 + AVOID_ANGLE_OFFSET; } else { base_angle = 90 - AVOID_ANGLE_OFFSET; } } // 检查避障时间是否结束 auto now = chrono::steady_clock::now(); auto elapsed = chrono::duration_cast<chrono::milliseconds>(now - avoidance_start_time).count(); if (elapsed > AVOIDANCE_DURATION) { current_state = AvoidanceState::RETURNING; avoidance_start_time = now; // 重置计时器 } break; } case AvoidanceState::RETURNING: { // 回归跑道逻辑 int return_direction = (line_error1 > 0) ? -1 : 1; // 与避让方向相反 base_angle = 90 + return_direction * AVOID_ANGLE_OFFSET; // 添加循迹误差补偿 base_angle += track_error * 0.3; // 检查是否应该返回循迹状态 auto now = chrono::steady_clock::now(); auto elapsed = chrono::duration_cast<chrono::milliseconds>(now - avoidance_start_time).count(); // 条件1:回归时间结束(1秒) // 条件2:检测到两条跑道线(正常循迹状态) if (elapsed > 1000 || (abs(track_error) < 20)) { current_state = AvoidanceState::TRACKING; } break; } } // 3. 平滑过渡处理(防止角度突变) static int last_angle = 90; const int MAX_CHANGE = 8; // 最大角度变化率 if (abs(base_angle - last_angle) > MAX_CHANGE) { base_angle = last_angle + ((base_angle > last_angle) ? MAX_CHANGE : -MAX_CHANGE); } last_angle = base_angle; // 4. 角度限幅保护 if (base_angle > 110) base_angle = 110; // 最大左转限制 if (base_angle < 70) base_angle = 70; // 最大右转限制 // 5. 执行转向 steering(base_angle); // 调试信息 string state_str; switch (current_state) { case AvoidanceState::TRACKING: state_str = "TRACKING"; break; case AvoidanceState::AVOIDING: state_str = "AVOIDING"; break; case AvoidanceState::RETURNING: state_str = "RETURNING"; break; } cout << "State: " << state_str << " | Angle: " << base_angle << endl; } void GetROI(Mat src, Mat& ROI) { // 取得源图像的长和宽 int width = src.cols; int height = src.rows; Rect rect(Point(0, (height / 20) * 10), Point(width, (height / 20) * 17)); // 按比例截取 ROI = src(rect); // 赋值ROI } vector<Point2f> get_lines_fangcheng(vector<Vec4i> lines) { // 遍历概率霍夫变换检测到的直线 float k = 0; // 斜率 float b = 0; // 截距 vector<Point2f> lines_fangcheng; for (unsigned int i = 0; i < lines.size(); i++) { k = (double)(lines[i][3] - lines[i][1]) / (double)(lines[i][2] - lines[i][0]); b = (double)lines[i][1] - k * (double)lines[i][0]; lines_fangcheng.push_back(Point2f(k, b)); } return lines_fangcheng; } //Rect blue(Mat img) //{ // Mat HSV, roi; // GetROI(img, roi); // cvtColor(roi, HSV, COLOR_BGR2HSV); // Scalar Lower(100, 100, 50); // Scalar Upper(120, 255, 255); // Mat mask; // inRange(HSV, Lower, Upper, mask); // Mat erosion_dilation; // erode(mask, erosion_dilation, kernel_3, Point(-1, -1), 1, BORDER_CONSTANT, morphologyDefaultBorderValue()); // dilate(erosion_dilation, erosion_dilation, kernel_3, Point(-1, -1), 1, BORDER_CONSTANT, morphologyDefaultBorderValue()); // Mat target; // bitwise_and(roi, roi, target, erosion_dilation); // Mat binary; // threshold(erosion_dilation, binary, 127, 255, THRESH_BINARY); // imshow("blue", binary); // vector<vector<Point>> contours; // findContours(binary, contours, RETR_EXTERNAL, CHAIN_APPROX_SIMPLE); // int maxContourIndex = -1; // double maxContourArea = 0.0; // for (int i = 0; i < contours.size(); i++) // { // double area = cv::contourArea(contours[i]); // if (area > maxContourArea) // { // maxContourArea = area; // maxContourIndex = i; // } // } // if (maxContourIndex != -1) { // Rect boundRect = boundingRect(contours[maxContourIndex]); // return boundRect; // } // else { // return Rect(); // } //} //Rect Obstacles(Mat img)//识别到锥桶 //{ // Rect obstacle_object = blue(img);//识别到的蓝色物体 // if (obstacle_object.height > 5 && obstacle_object.height < 100)//对识别到的蓝色物体限幅, // { // rectangle(img, Point(obstacle_object.x, obstacle_object.y + frame.rows / 2), Point(obstacle_object.x + obstacle_object.width, obstacle_object.y + obstacle_object.height + frame.rows / 2), Scalar(0, 255, 0), 3); // return obstacle_object; // } // return Rect(); //} Rect blue(Mat img) { // 定义有效区域面积阈值 const int MIN_AREA = 0; // 最小面积阈值(像素) const int MAX_AREA = 5000; // 最大面积阈值(像素) Mat HSV, roi; GetROI(img, roi); cvtColor(roi, HSV, COLOR_BGR2HSV); // 改进:使用自适应HSV范围 Scalar Lower(100, 100, 50); Scalar Upper(120, 255, 255); // 改进:计算图像亮度并动态调整阈值 Scalar mean_val = mean(HSV); if (mean_val[2] > 150) { // 高亮度环境 Lower.val[1] = 120; // 增加饱和度下限 } else if (mean_val[2] < 50) { // 低亮度环境 Upper.val[2] = 200; // 降低明度上限 } Mat mask; inRange(HSV, Lower, Upper, mask); // 改进:增强形态学处理 Mat erosion_dilation; Mat kernel = getStructuringElement(MORPH_ELLIPSE, Size(5, 5)); erode(mask, erosion_dilation, kernel, Point(-1, -1), 2); dilate(erosion_dilation, erosion_dilation, kernel, Point(-1, -1), 2); // 改进:添加开运算去除小噪点 morphologyEx(erosion_dilation, erosion_dilation, MORPH_OPEN, kernel); Mat target; bitwise_and(roi, roi, target, erosion_dilation); Mat binary; threshold(erosion_dilation, binary, 127, 255, THRESH_BINARY); imshow("blue", binary); vector<vector<Point>> contours; findContours(binary, contours, RETR_EXTERNAL, CHAIN_APPROX_SIMPLE); int maxContourIndex = -1; double maxContourArea = 0.0; // 改进:添加宽高比约束 const float MIN_ASPECT_RATIO = 0.5; // 最小宽高比 const float MAX_ASPECT_RATIO = 2.0; // 最大宽高比 for (int i = 0; i < contours.size(); i++) { double area = cv::contourArea(contours[i]); // 跳过不满足面积条件的轮廓 if (area < MIN_AREA || area > MAX_AREA) continue; // 计算轮廓的边界矩形 Rect boundRect = boundingRect(contours[i]); float aspect_ratio = static_cast<float>(boundRect.width) / boundRect.height; // 跳过不满足宽高比的轮廓 if (aspect_ratio < MIN_ASPECT_RATIO || aspect_ratio > MAX_ASPECT_RATIO) continue; // 更新最大有效轮廓 if (area > maxContourArea) { maxContourArea = area; maxContourIndex = i; } } if (maxContourIndex != -1) { Rect boundRect = boundingRect(contours[maxContourIndex]); // 最终有效性检查(面积+宽高比) float aspect_ratio = static_cast<float>(boundRect.width) / boundRect.height; if (boundRect.area() >= MIN_AREA && boundRect.area() <= MAX_AREA && aspect_ratio >= MIN_ASPECT_RATIO && aspect_ratio <= MAX_ASPECT_RATIO) { return boundRect; } } return Rect(); // 返回空矩形表示未找到有效区域 } Rect Obstacles(Mat img) { Rect obstacle_object = blue(img); // 检测到有效锥桶 if (obstacle_object.height > 5 && obstacle_object.height < 100) { // 计算在原图中的坐标位置 int roi_offset_y = img.rows / 2; // ROI起始y坐标 Point topLeft(obstacle_object.x, obstacle_object.y + roi_offset_y); Point bottomRight(obstacle_object.x + obstacle_object.width, obstacle_object.y + obstacle_object.height + roi_offset_y); // 在原图上绘制绿色框 rectangle(img, topLeft, bottomRight, Scalar(0, 255, 0), 3); // 更新状态为避障中 if (current_state == AvoidanceState::TRACKING) { current_state = AvoidanceState::AVOIDING; avoidance_start_time = chrono::steady_clock::now(); } return obstacle_object; } return Rect(); } int car_start(Mat img) { Rect start_flag = blue(img); // cout << start_flag.width << " " << start_flag.height << endl; if (start_flag.width > 50 && start_flag.height > 50) { return 0; // ?????????? } return 1; // ????????I???? } void camera(int angl_x, int angl_y) { gpioPWM(22, angl_x);//大左小右 gpioPWM(23, angl_y); //大上下小 } void GPS_init(void) { char r_buf[1024]; bzero(r_buf, 1024); GPS = uart_open(GPS, "/dev/ttyUSB0");/*串口号/dev/ttySn,USB口号/dev/ttyUSBn */ if (GPS == -1) { fprintf(stderr, "GPS error\n"); exit(EXIT_FAILURE); } if (uart_set(GPS, BAUD, 8, 'N', 1) == -1) { fprintf(stderr, "GPS set failed!\n"); exit(EXIT_FAILURE); } } void ParseData(char chr) { static char chrBuf[100]; static unsigned char chrCnt = 0; signed short sData[4]; unsigned char i; time_t now; chrBuf[chrCnt++] = chr; if (chrCnt < 11) return; if ((chrBuf[0] != 0x55) || ((chrBuf[1] & 0x50) != 0x50)) { printf("Error:%x %x\r\n", chrBuf[0], chrBuf[1]); memcpy(&chrBuf[0], &chrBuf[1], 10); chrCnt--; return; } memcpy(&sData[0], &chrBuf[2], 8); switch (chrBuf[1]) { case 0x51: for (i = 0; i < 3; i++) a[i] = (float)sData[i] / 32768.0 * 16.0; time(&now); //printf("\r\nT:%s a:%6.3f %6.3f %6.3f ", asctime(localtime(&now)), a[0], a[1], a[2]); break; case 0x52: for (i = 0; i < 3; i++) w[i] = (float)sData[i] / 32768.0 * 2000.0; //printf("w:%7.3f %7.3f %7.3f ", w[0], w[1], w[2]); break; case 0x53: for (i = 0; i < 3; i++) Angle[i] = (float)sData[i] / 32768.0 * 180.0; //printf("A:%7.3f %7.3f %7.3f ", Angle[0], Angle[1], Angle[2]); Angle_Z = Angle[2] - 167; printf("Z:%d \r\n", Angle_Z); break; case 0x54: for (i = 0; i < 3; i++) h[i] = (float)sData[i]; //printf("h:%4.0f %4.0f %4.0f ", h[0], h[1], h[2]); break; } chrCnt = 0; } void Get_GPS_data(void) { while (1) { ret = recv_data(GPS, r_buf, 44); if (ret == -1) { fprintf(stderr, "uart read failed!\n"); exit(EXIT_FAILURE); } for (int i = 0; i < ret; i++) ParseData(r_buf[i]); usleep(1000); } //usleep(1000); } void audio(void) { system("omxplayer /home/pi/car435/car.wav"); } Mat HLS_Lthresh(const cv::Mat& img, int min_thresh = 220, int max_thresh = 255) { Mat hls; cvtColor(img, hls, COLOR_BGR2HLS); vector<Mat> channels; split(hls, channels); Mat l_channel = channels[1]; double minVal, maxVal; minMaxLoc(l_channel, &minVal, &maxVal); l_channel.convertTo(l_channel, CV_8UC1, 255.0 / maxVal); Mat binary_output = Mat::zeros(l_channel.size(), CV_8UC1); inRange(l_channel, min_thresh, max_thresh, binary_output); return binary_output; } Mat LAB_BThreshold(const Mat& img, int min_thresh = 190, int max_thresh = 255) { Mat lab; cvtColor(img, lab, COLOR_BGR2Lab); vector<Mat> lab_channels; split(lab, lab_channels); Mat b_channel = lab_channels[2]; //cout<<b_channel<<endl; double maxVal; minMaxLoc(b_channel, nullptr, &maxVal); //cout<<maxVal<<endl; if (maxVal > 175) { b_channel.convertTo(b_channel, CV_8UC1, 255.0 / maxVal); } Mat binary_output = Mat::zeros(b_channel.size(), CV_8UC1); inRange(b_channel, min_thresh, max_thresh, binary_output); return binary_output; } Mat combineThresholds(const Mat& img_LThresh, const Mat& img_BThresh) { Mat combined = Mat::zeros(img_BThresh.size(), CV_8UC1); bitwise_or(img_LThresh, img_BThresh, combined); return combined; } struct LaneData { vector<Point> left_points; vector<Point> right_points; vector<float> left_fit; vector<float> right_fit; vector<float> mid_fit; vector<Rect> left_windows; vector<Rect> right_windows; }; Mat getHistogram(const Mat& binary_img) { Mat hist; reduce(binary_img.rowRange(binary_img.rows / 2, binary_img.rows), hist, 0, REDUCE_SUM, CV_32S); return hist; } pair<int, int> findLaneBases(const Mat& hist) { int midpoint = hist.cols / 2; int quarter = midpoint / 2; Point left_base, right_base; minMaxLoc(hist.colRange(quarter, midpoint), 0, 0, 0, &left_base); minMaxLoc(hist.colRange(midpoint, midpoint + quarter), 0, 0, 0, &right_base); return { left_base.x + quarter, right_base.x + midpoint }; } LaneData slidingWindow(const Mat& binary_img, int nwindows = 9, int margin = 20, int minpix = 10) { LaneData result; auto [leftx, rightx] = findLaneBases(getHistogram(binary_img)); //cout<<"leftx:"<<leftx<<"rightx:"<<rightx<<endl; int window_height = binary_img.rows / nwindows; vector<Point> nonzero; findNonZero(binary_img, nonzero); for (int i = 0; i < nwindows; ++i) { int win_y_low = binary_img.rows - (i + 1) * window_height; int win_y_high = binary_img.rows - i * window_height; Rect left_win(leftx - margin, win_y_low, 2 * margin, window_height); Rect right_win(rightx - margin, win_y_low, 2 * margin, window_height); result.left_windows.push_back(left_win); result.right_windows.push_back(right_win); for (const auto& pt : nonzero) { if (left_win.contains(pt)) result.left_points.push_back(pt); if (right_win.contains(pt)) result.right_points.push_back(pt); } if (result.left_points.size() > minpix) leftx = mean(result.left_points)[0]; if (result.right_points.size() > minpix) rightx = mean(result.right_points)[0]; } return result; } vector<float> polyFit(const vector<Point>& points, int order = 2) { if (points.size() < order + 1) { cout << "data no enough for" << order << "profit" << endl; return {}; } Mat A(points.size(), order + 1, CV_32F); Mat B(points.size(), 1, CV_32F); for (size_t i = 0; i < points.size(); ++i) { float y = points[i].y; A.at<float>(i, 0) = y * y; A.at<float>(i, 1) = y; A.at<float>(i, 2) = 1.0f; B.at<float>(i, 0) = points[i].x; } Mat coeff; solve(A, B, coeff, DECOMP_SVD); //solve(A, B, coeff, DECOMP_QR); return { coeff.at<float>(0), coeff.at<float>(1), coeff.at<float>(2) }; } vector<float> calculateCenterLaneCoefficient(const vector<float>& left_fit, const vector<float>& right_fit) { if (left_fit.size() != 3 || right_fit.size() != 3) { cout << "Invalid polynomial coefficients" << endl; return {}; } vector<float> center_fit(3); center_fit[0] = (left_fit[0] + right_fit[0]) / 2.0f; // A 系数 center_fit[1] = (left_fit[1] + right_fit[1]) / 2.0f; // B 系数 center_fit[2] = (left_fit[2] + right_fit[2]) / 2.0f; // C 系数 //cout<<center_fit[0]<<center_fit[1]<<center_fit[2]<<endl; return center_fit; } float calculateXFromPolynomial(const vector<float>& fit, float y) { if (fit.size() != 3) return 0.0f; return fit[0] * y * y + fit[1] * y + fit[2]; } void visualize(Mat& img, const LaneData& data) { // 绘制滑动窗口 // for (const auto& win : data.left_windows) // rectangle(img, win, Scalar(0,255,0), 2); // for (const auto& win : data.right_windows) // rectangle(img, win, Scalar(0,255,0), 2); // 绘制车道线点 for (const auto& pt : data.left_points) circle(img, pt, 3, Scalar(255, 0, 0), -1); for (const auto& pt : data.right_points) circle(img, pt, 3, Scalar(0, 0, 255), -1); // 绘制拟合曲线 if (!data.left_fit.empty()) { for (int y = 0; y < img.rows; ++y) { int x = data.left_fit[0] * y * y + data.left_fit[1] * y + data.left_fit[2]; if (x >= 0 && x < img.cols) circle(img, Point(x, y), 2, Scalar(0, 0, 255), -1); } } if (!data.right_fit.empty()) { for (int y = 0; y < img.rows; ++y) { int x = data.right_fit[0] * y * y + data.right_fit[1] * y + data.right_fit[2]; if (x >= 0 && x < img.cols) circle(img, Point(x, y), 2, Scalar(0, 0, 255), -1); } } circle(img, Point(center_x, line_y), 3, Scalar(0, 255, 0), -1); } bool Contour_Area(vector<Point> contour1, vector<Point> contour2) { return contourArea(contour1) > contourArea(contour2); } Mat customEqualizeHist(const Mat& inputImage, float alpha) { Mat enhancedImage; equalizeHist(inputImage, enhancedImage); return alpha * enhancedImage + (1 - alpha) * inputImage; } void timer(void)//定时器中断 { TIMECOUNT++; std::cout << "timer:" << TIMECOUNT << std::endl; } void reset_timer(void)//定时器中断 { TIMECOUNT = 0; } //int PID(int error) //{ // const float Kp = 0.8f; // int output = static_cast<int>(Kp * error); // // output = max(-30, min(30, output)); // return output; //} int timer_interrupt(void)//定时器 { while (true) { //timer(); this_thread::sleep_for(chrono::milliseconds(50)); Control_Xun(); } return 0; } void onTrackbar(int, void*) { LAB_Bmin = getTrackbarPos("LAB_Bmin", "TrackBars"); LAB_Bmax = getTrackbarPos("LAB_Bmax", "TrackBars"); HSL_Lmin = getTrackbarPos("HSL_Lmin", "TrackBars"); HSL_Lmax = getTrackbarPos("HSL_Lmax", "TrackBars"); } void UI_init(void) { namedWindow("TrackBars", WINDOW_NORMAL); resizeWindow("TrackBars", 320, 240); moveWindow("TrackBars", 0, 50); // 设置窗口位置 createTrackbar("LAB_Bmin", "TrackBars", &LAB_Bmin, 255, onTrackbar); setTrackbarPos("LAB_Bmin", "TrackBars", LAB_Bmin); createTrackbar("LAB_Bmax", "TrackBars", &LAB_Bmax, 255, onTrackbar); setTrackbarPos("LAB_Bmax", "TrackBars", LAB_Bmax); createTrackbar("HSL_Lmin", "TrackBars", &HSL_Lmin, 255, onTrackbar); setTrackbarPos("HSL_Lmin", "TrackBars", HSL_Lmin); createTrackbar("HSL_Lmax", "TrackBars", &HSL_Lmax, 255, onTrackbar); setTrackbarPos("HSL_Lmax", "TrackBars", HSL_Lmax); } void onMouse(int event, int x, int y, int flags, void* userdata) { mousePos = Point(x, y); } void test(void) { while (1) { line_error = -100; this_thread::sleep_for(chrono::milliseconds(500)); line_error = 100; this_thread::sleep_for(chrono::milliseconds(500)); } } void find_blue_card(void)//检测到蓝色挡板 { vector<vector<Point>> contours; vector<Vec4i> hierarcy; findContours(img_HSV_mask, contours, hierarcy, RETR_EXTERNAL, CHAIN_APPROX_NONE); if (contours.size() > 0) { sort(contours.begin(), contours.end(), Contour_Area); //cout<<cStart_motorontours.size()<<endl; vector<vector<Point>> newContours; for (const vector<Point>& contour : contours) { Point2f center; float radius; minEnclosingCircle(contour, center, radius); if (center.y > 90 && center.y < 160) { newContours.push_back(contour); } } contours = newContours; if (contours.size() > 0) { if (contourArea(contours[0]) > 500) { cout << "find blue card" << endl; Point2f center; float radius; minEnclosingCircle(contours[0], center, radius); circle(img, center, static_cast<int>(radius), Scalar(0, 255, 0), 2); find_blue_card_flag = 1; } else { cout << "not blue card" << endl; } } } else { cout << "not blue card" << endl; } } void find_blue_card_remove(void)//蓝色挡板移开 { cout << "detecting blue card remove" << endl; vector<vector<Point>> contours; vector<Vec4i> hierarcy; findContours(img_HSV_mask, contours, hierarcy, RETR_EXTERNAL, CHAIN_APPROX_NONE); if (contours.size() > 0) { sort(contours.begin(), contours.end(), Contour_Area); vector<vector<Point>> newContours; for (const vector<Point>& contour : contours) { Point2f center; float radius; minEnclosingCircle(contour, center, radius); if (center.y > 90 && center.y < 160) { newContours.push_back(contour); } } contours = newContours; if (contours.size() == 0) { start_flag = 0; cout << "blue card remove" << endl; //Start_motor(); //sleep(2); } } else { start_flag = 0; cout << "blue card remove" << endl; //Start_motor(); //sleep(2); } } int crossroad(void)//斑马线识别 { VideoCapture capture; capture.open(2); if (!capture.isOpened()) { cout << "Can not open camera" << endl; return -1; } else cout << "camera open successful" << endl; capture.set(cv::CAP_PROP_FOURCC, cv::VideoWriter::fourcc('M', 'J', 'P', 'G')); capture.set(cv::CAP_PROP_FPS, 30); capture.set(cv::CAP_PROP_FRAME_WIDTH, 320); capture.set(cv::CAP_PROP_FRAME_HEIGHT, 240); this_thread::sleep_for(chrono::milliseconds(2000)); //让图像稳定 cout << "Program started" << endl; Mat img_cross; Mat blur; while (1) { capture >> img_cross; GaussianBlur(img_cross, blur, Size(5, 5), 0); Mat hsv; cvtColor(blur, hsv, COLOR_BGR2HSV); Scalar lower_white = Scalar(0, 0, 200); Scalar upper_white = Scalar(180, 40, 255); Mat cross_mask; inRange(hsv, lower_white, upper_white, cross_mask); // Mat edges; // Canny(blur, edges, 50, 150); // bitwise_or(cross_mask, edges, cross_mask); Mat kernel = getStructuringElement(MORPH_RECT, Size(7, 7)); //dilate(mask1, mask1, kernel); //erode(mask1, mask1, kernel); morphologyEx(cross_mask, cross_mask, MORPH_CLOSE, kernel); //Rect roi(0,120,320,120);//shang Rect roi(0, 260, 640, 220);//xia Mat region = cross_mask(roi); //imshow("combined_image", region); //imshow("Full Mask", cross_mask); // 完整图像 //imshow("ROI Region", region); // 仅用于调试检测区 //imshow("combined_image", mask1_roi); int stripe_count = 0, transitions = 0; for (int i = 0; i < region.rows; i++) { transitions = 0; for (int j = 5; j < region.cols - 5; j++) { if (region.at<uchar>(i, j) != region.at<uchar>(i, j - 1)) transitions++; } //cout<<"transitions:"<<transitions<<endl; if (transitions >= 6) stripe_count++; } cross_flag = (stripe_count >= 16) ? 1 : 0; cout << "stripe_count" << stripe_count << "cross_flag:" << cross_flag << endl; if (cv::waitKey(1) == 27)break; } gpioTerminate(); capture.release(); // 释放摄像头 destroyAllWindows(); // 关闭所有窗口 //uart_close(GPS); return 0; } Mat per_wt(Mat& frame) { int img_h, img_w; img_clone = frame.clone(); img_h = img_clone.rows; // 图像高度 img_w = img_clone.cols; vector<cv::Point2f> src = { Point2f(125, 198), Point2f(213, 198), Point2f(295, 237), Point2f(55, 237) }; vector<cv::Point2f> dst = { Point2f(100,0), Point2f(img_w - 100, 0), Point2f(img_w - 100, img_h), Point2f(100, img_h) }; // 定义目标坐标(变换后的四个点) vector<cv::Point> polygon; for (const auto& pt : src) { polygon.push_back(Point(static_cast<int>(pt.x), static_cast<int>(pt.y))); } polylines(img_clone, polygon, 1, Scalar(0, 0, 255), 3, cv::LINE_AA); // 计算透视变换矩阵 Mat M = getPerspectiveTransform(src, dst); Mat Minv = getPerspectiveTransform(dst, src); // 应用透视 warpPerspective(frame, warped, M, cv::Size(img_w, img_h), cv::INTER_LINEAR); waitKey(5); return warped; } int find_line(void) //循迹线程 { // 初始化程序 //UI_init(); VideoCapture capture; capture.open(0); if (!capture.isOpened()) { cout << "Can not open camera" << endl; return -1; } else cout << "camera open successful" << endl; capture.set(cv::CAP_PROP_FOURCC, cv::VideoWriter::fourcc('M', 'J', 'P', 'G')); capture.set(cv::CAP_PROP_FPS, 30); capture.set(cv::CAP_PROP_FRAME_WIDTH, 320); capture.set(cv::CAP_PROP_FRAME_HEIGHT, 240); this_thread::sleep_for(chrono::milliseconds(1000)); //让图像稳定 cout << "Program started" << endl; while (1) { capture >> img; if (start_flag == 1) { cvtColor(img, img_HSV, COLOR_BGR2HSV); Scalar HSV_L = Scalar(100, 43, 46); Scalar HSV_H = Scalar(124, 255, 255); inRange(img_HSV, HSV_L, HSV_H, img_HSV_mask); Mat kernel = getStructuringElement(MORPH_RECT, Size(5, 5)); morphologyEx(img_HSV_mask, img_HSV_mask, MORPH_OPEN, kernel); morphologyEx(img_HSV_mask, img_HSV_mask, MORPH_CLOSE, kernel); if (find_blue_card_flag == 0)find_blue_card(); else find_blue_card_remove(); } else { img_per = per_wt(img); Mat HLS_Lresult = HLS_Lthresh(img_per, HSL_Lmin, HSL_Lmax); Mat LAB_Bresult = LAB_BThreshold(img_per, LAB_Bmin, LAB_Bmax); img_combined = combineThresholds(HLS_Lresult, LAB_Bresult); Mat white_image(img.size(), img.type(), Scalar::all(255)); LaneData lanes = slidingWindow(img_combined); lanes.left_fit = polyFit(lanes.left_points); lanes.right_fit = polyFit(lanes.right_points); if (lanes.left_fit.size() != 3 || lanes.right_fit.size() != 3) { if (lanes.left_fit.size() != 3)center_x = lanes.right_fit[0] * line_y * line_y + lanes.right_fit[1] * line_y + lanes.right_fit[2] - rail_width_pix; if (lanes.right_fit.size() != 3)center_x = lanes.left_fit[0] * line_y * line_y + lanes.left_fit[1] * line_y + lanes.left_fit[2] + rail_width_pix; cout << center_x << endl; } if (lanes.left_fit.size() == 3 && lanes.right_fit.size() == 3) { center_x = (lanes.right_fit[0] * line_y * line_y + lanes.right_fit[1] * line_y + lanes.right_fit[2] + lanes.left_fit[0] * line_y * line_y + lanes.left_fit[1] * line_y + lanes.left_fit[2]) / 2; cout << center_x << endl; } line_error = center_x - 160; //cout << left_x << "," << right_x << "," << center_x << "," << line_error << endl; visualize(white_image, lanes); //namedWindow("img", cv::WINDOW_NORMAL); // 创建可调整大小的窗口 //resizeWindow("img", 320, 240); // 设置窗口尺寸 //moveWindow("img", 320, 50); // 设置窗口位置 //imshow("img", img_clone); //namedWindow("combined_image", cv::WINDOW_NORMAL); // 创建可调整大小的窗口 //resizeWindow("combined_image", 320, 240); // 设置窗口尺寸 //moveWindow("combined_image", 640, 50); // 设置窗口位置 //imshow("combined_image", img_combined); //namedWindow("white_image", cv::WINDOW_NORMAL); // 创建可调整大小的窗口 //resizeWindow("white_image", 320, 240); // 设置窗口尺寸 //moveWindow("white_image", 960, 50); // 设置窗口位置 //imshow("white_image", white_image); if (cross_flag == 1) { Control_stop(); audio(); break; } } if (cv::waitKey(1) == 27)break; //if(car_blake_flag == 1) ;//break;//结束代码 } gpioTerminate(); capture.release(); // 释放摄像头 destroyAllWindows(); // 关闭所有窗口 //uart_close(GPS); return 0; } //————————————————————————— int Blue_cone(void) { VideoCapture capture; capture.open(2); if (!capture.isOpened()) { cout << "Error: Camera not available" << endl; return -1; } else cout << "camera open successful" << endl; capture.set(cv::CAP_PROP_FOURCC, cv::VideoWriter::fourcc('M', 'J', 'P', 'G')); capture.set(cv::CAP_PROP_FPS, 30); capture.set(cv::CAP_PROP_FRAME_WIDTH, 640); capture.set(cv::CAP_PROP_FRAME_HEIGHT, 480); this_thread::sleep_for(chrono::milliseconds(1000)); //让图像稳定 cout << "Program started" << endl; current_state = AvoidanceState::TRACKING; while (1) { capture >> frame; if (!capture.read(frame)) { cout << "Frame read error!" << endl; break; } Rect cone = Obstacles(frame); imshow("blue_cone", frame); // 无论是否检测到锥桶都执行控制 Control_avoid(); if (waitKey(1) == 27) break; } gpioTerminate(); capture.release(); // 释放摄像头 destroyAllWindows(); // 关闭所有窗口 return 0; } //————————————————————————-- int main() { gpioTerminate(); gpio_init(); GPS_init(); camera(72, 86); steering(90); thread thread1(find_line);//循迹线程 thread thread2(Get_GPS_data);//test thread thread3(timer_interrupt);//定时器功能 thread thread4(crossroad); thread thread5(Blue_cone);//避障线程 thread1.join(); thread2.join(); thread3.join(); thread4.join(); thread5.join(); return 0;//GPS_init(); } //取数据调试的main函数 //int main(void) //{ // UI_init(); // gpioTerminate(); // gpio_init(); // camera(72,86); // steering(90); // // Mat img = imread("C:/Users/wtcat/CLionProjects/untitled7/test_images/225.jpg",IMREAD_COLOR_BGR); // // if(img.empty()) // // { // // std::cerr << "Error: Could not load the image" << std::endl; // // return -1; // // } // VideoCapture capture; // capture.open(2); // if (!capture.isOpened()) // { // cout << "Can not open camera!" << std::endl; // return -1; // } // capture.set(cv::CAP_PROP_FOURCC, cv::VideoWriter::fourcc('M', 'J', 'P', 'G')); // capture.set(cv::CAP_PROP_FPS, 30); // capture.set(cv::CAP_PROP_FRAME_WIDTH, 320); // capture.set(cv::CAP_PROP_FRAME_HEIGHT, 240); // this_thread::sleep_for(chrono::milliseconds(1000)); //让图像稳定 // Mat img_per,img_combined; // string windowName = "XY"; // namedWindow(windowName, WINDOW_AUTOSIZE); // setMouseCallback(windowName, onMouse, NULL); // while (1) // { // capture>>img; // img_per=per_wt(img); // string coordText = "X=" + to_string(mousePos.x) + " Y=" + to_string(mousePos.y); // putText(img_clone, coordText, Point(15, 35),FONT_HERSHEY_SIMPLEX, 0.7, Scalar(0, 255, 100), 2); // moveWindow(windowName, 320, 50); // imshow(windowName, img_clone); // Mat HLS_Lresult = HLS_Lthresh(img_per,HSL_Lmin,HSL_Lmax); // Mat LAB_Bresult = LAB_BThreshold(img_per,LAB_Bmin,LAB_Bmax); // img_combined=combineThresholds(HLS_Lresult, LAB_Bresult); // //img_combined=HLS_Lresult; // Mat white_image(img.size(), img.type(), Scalar::all(255)); // LaneData lanes = slidingWindow(img_combined); // lanes.left_fit = polyFit(lanes.left_points); // lanes.right_fit = polyFit(lanes.right_points); // visualize(white_image, lanes); // namedWindow("combined_image", cv::WINDOW_NORMAL); // 创建可调整大小的窗口 // resizeWindow("combined_image", 320, 240); // 设置窗口尺寸 // moveWindow("combined_image", 640, 50); // 设置窗口位置 // imshow("combined_image", img_combined); // namedWindow("white_image", cv::WINDOW_NORMAL); // 创建可调整大小的窗口 // resizeWindow("white_image", 320, 240); // 设置窗口尺寸 // moveWindow("white_image", 960,50); // 设置窗口位置 // imshow("white_image", white_image); // if (cv::waitKey(1) == 27) // { // break; // } // //if(car_blake_flag == 1) ;//break;//结束代码 // } // capture.release(); // 释放摄像头 // destroyAllWindows(); // 关闭所有窗口 // return 0; //}现在,在跑道尽头有一块停车区域(将跑道一分为二分左右两侧,并分别贴着AB标识),在停车区域前贴有一块标识(A或B),小车要识别到A或者B,并跑进相应的停车区域停车,停车区域有一条黄线横在跑道上,AB标识均为蓝底白字,黄线和指示牌均贴在地上,是先识别到一个指示牌A或B然后根据他再往前走识别到黄线及黄线后方两块区域AB停进相应的区域。请帮我补程序
最新发布
11-18
以下是client的程序,在关机重启之后client出现重复输出stdin字符的问题,是什么原因 static void *fcwli_epollRW(void * arg) { int slave_sock = (int)(long) arg; /* 注意不同系统中的区别 */ char serial; int readLen; char buffer[1024*100]; int i; int nfds; int unit = 0; // epoll int epoll_fd = epoll_create1(0); if (epoll_fd < 0) { DBG_ZSZ("epoll_create1"); close(slave_sock); cli__stopUseFakeConsole(); return NULL; } master_info.epoll_fd = epoll_fd; /* 传输unit 号 */ unit = UNIT_CURRENT; if(write(slave_sock,(char*)&unit,sizeof(unit)) < 0) { DBG_ZSZ("write unitId error"); goto done; } struct epoll_event ev, events[2]; // 添加标准输入监控 ev.events = EPOLLIN; ev.data.fd = STDIN_FILENO; if (epoll_ctl(epoll_fd, EPOLL_CTL_ADD, STDIN_FILENO, &ev) < 0) { DBG_ZSZ("epoll_ctl stdin"); goto done; } // 添加套接字监控(包含断开检测) ev.events = EPOLLIN | EPOLLRDHUP; /* 监控套接字 EPOLLIN | EPOLLRDHUP 状态*/ ev.data.fd = slave_sock; if (epoll_ctl(epoll_fd, EPOLL_CTL_ADD, slave_sock, &ev) < 0) { DBG_ZSZ("epoll_ctl sock"); goto done; } DBG_ALZ("epoll loop start"); DBG_ZSZ("fwcli__useMasterCliServer------sockfd:%d",slave_sock); // 主事件循环 while (1) { nfds = epoll_wait(epoll_fd, events, 2, 100); // 100ms 超时 // 检查退出标志 pal_mutex_take(mtx_fakeConsole, pal_mutex_FOREVER); if(FALSE == bUseFakeConsole) /* 每次循环都检查bUseFakeConsol的值,如果为False那么线程结束,tFakeConsole结束*/ { printf("FALSE\n"); pal_mutex_give(mtx_fakeConsole);/* 停止使用fakeConsole*/ break; /* 立即结束监听 */ } pal_mutex_give(mtx_fakeConsole); if (nfds < 0) { DBG_ALZ("epoll_wait eroor"); break; } for (i = 0; i < nfds; i++) { if ( STDIN_FILENO == events[i].data.fd) { /* 处理标准输入 */ if (read(STDIN_FILENO, &serial, 1) < 0) { DBG_ALZ("stdin read error"); goto done; } DBG_ZSZ_FILE("/tmp/input.txt","input: %c",serial); pal_mutex_take(mtx_slaveSendInput, pal_mutex_FOREVER); if (write(slave_sock, &serial, 1) < 0) { pal_mutex_give(mtx_slaveSendInput); goto done; } pal_mutex_give(mtx_slaveSendInput); } else if (slave_sock == events[i].data.fd) { /* 处理服务器关闭 */ if (events[i].events & EPOLLRDHUP) { DBG_ALZ("Master closed connection"); goto done; } /* 处理服务器数据 */ readLen = read(slave_sock, buffer, sizeof(buffer)); if (readLen <= 0) { if (readLen < 0) DBG_ALZ("read 失败"); goto done; } write(STDOUT_FILENO, buffer, readLen); } } } done: DBG_ALZ("epoll loop end"); DBG_ZSZ_FILE("/tmp/close.txt","close(epoll_fd) %d",epoll_fd); DBG_ZSZ_FILE("/tmp/close.txt","close(slave_sock) %d",slave_sock); cli__stopUseFakeConsole(); close(epoll_fd); close(slave_sock); return NULL; }
10-23
<think>我们分析问题:在关机重启后,client出现重复输出stdin字符的问题。 观察代码,这是一个使用epoll处理标准输入和socket读写的线程函数。问题现象是重复输出stdin字符,即用户输入一个字符,却显示多个。 可能的原因: 1. 输入回显问题:通常终端有两种模式:规范模式(cooked)和非规范模式(raw)。在规范模式下,输入会被缓冲区缓存直到遇到换行,并且会回显。而非规范模式则不会。 我们的代码中,每次从标准输入读取一个字符(read(STDIN_FILENO, &serial, 1)),然后发送到服务器,并期望从服务器返回回显(或者服务器处理后的结果)。 但是,如果终端本身处于规范模式,那么当我们读取一个字符时,终端已经回显了该字符,而服务器可能又返回了同样的字符,导致重复显示。 2. 代码逻辑问题:在读取标准输入后,将字符写入socket,然后服务器可能会将这个字符回传(例如,实现一个远程终端时,服务器会回显字符)。这时,客户端会再次将这个字符输出到标准输出(write(STDOUT_FILENO,...))。这样,如果终端本身已经回显了,就会显示两次。 3. 关机重启后出现:可能是重启后终端的模式设置不同?或者程序启动时没有正确设置终端模式? 4. 其他可能性:比如多个线程同时操作标准输出?但是这里只有一个线程在读取标准输入和socket并写标准输出。 重点检查: 程序在开始时是否将终端设置为非规范模式(禁止回显)?在程序退出时是否恢复了终端模式? 查看代码,没有发现设置终端模式的代码。因此,在规范模式下,终端会回显输入的字符,而客户端又将从服务器接收到的相同字符(如果服务器回传的话)输出到标准输出,导致重复。 解决方案: 在程序开始时将终端设置为非规范模式,并关闭回显(如果需要的话),在程序退出时恢复终端模式。 但是,注意:这个线程函数中并没有设置终端模式的代码。另外,在程序的其他地方(比如启动这个线程之前)是否有设置? 由于问题在重启后出现,可能重启前程序有正确的设置,而重启后设置丢失?或者重启后程序没有重新设置? 因此,我们推断:在程序开始时,需要设置终端为非规范模式,并关闭回显(或者只关闭回显,具体看需求)。而在程序退出时(包括正常退出和异常退出)需要恢复终端模式。 在这个线程中,我们可以在进入事件循环之前设置终端为非规范模式,并在退出时恢复。 修改建议: 1. 在进入epoll循环前保存当前终端属性,并设置非规范模式(关闭回显)。 2. 在退出函数时(goto done之前)恢复终端属性。 示例代码(使用termios): 在函数开始时: #include <termios.h> struct termios orig_termios, new_termios; // 保存当前终端设置 if (tcgetattr(STDIN_FILENO, &orig_termios) != 0) { // 错误处理 } new_termios = orig_termios; // 设置为非规范模式,关闭回显 new_termios.c_lflag &= ~(ICANON | ECHO); // 设置最小读取字符数为1,超时时间为0(即立即返回) new_termios.c_cc[VMIN] = 1; new_termios.c_cc[VTIME] = 0; if (tcsetattr(STDIN_FILENO, TCSANOW, &new_termios) != 0) { // 错误处理 } 在done标签后,关闭文件描述符之前恢复: tcsetattr(STDIN_FILENO, TCSANOW, &orig_termios); 注意:由于程序可能有多线程操作,但终端设置是进程级别的,所以需要确保其他线程不会干扰。通常,我们只在一个地方设置终端模式。 另外,在代码中,我们只读取一个字符,并且希望立即得到这个字符(非规范模式),所以这样设置是合适的。 如果没有设置终端为非规范模式,那么在规范模式下,每次输入一个字符,终端会回显,然后我们的程序读取到这个字符,发送到服务器,服务器可能又回传,然后我们再次输出,导致重复。 因此,重复输出的原因很可能是终端处于规范模式,而我们没有禁止终端的回显,导致输入被回显一次,服务器返回的数据又输出一次。 所以,问题原因:终端处于规范模式,导致输入回显,同时服务器返回相同字符又被输出一次,造成重复。 解决方案:在读写标准输入前,将终端设置为非规范模式并关闭回显。 但是,注意:在代码中,我们不仅读取标准输入,还会将服务器返回的数据写到标准输出。所以,我们只需要禁止终端的回显(这样终端不会自动回显我们输入的字符),而由服务器返回的字符来显示(这样只显示一次)。 修改代码示例: 在epoll循环之前添加终端设置: ```c struct termios orig_termios, new_termios; if (isatty(STDIN_FILENO)) { if (tcgetattr(STDIN_FILENO, &orig_termios) != 0) { DBG_ALZ("tcgetattr error"); goto done; } new_termios = orig_termios; new_termios.c_lflag &= ~(ICANON | ECHO); // 非规范模式,关闭回显 new_termios.c_cc[VMIN] = 1; new_termios.c_cc[VTIME] = 0; if (tcsetattr(STDIN_FILENO, TCSANOW, &new_termios) != 0) { DBG_ALZ("tcsetattr error"); goto done; } } ``` 在done标签后,恢复终端设置: ```c done: if (isatty(STDIN_FILENO)) { tcsetattr(STDIN_FILENO, TCSANOW, &orig_termios); } ... // 原有代码 ``` 这样修改后,终端不会自动回显输入的字符,而由服务器返回的数据来显示,因此每个字符只显示一次。 另外,注意:如果程序在其他地方也修改了终端设置,需要确保这里不会冲突。 根据问题描述,重启后出现,可能重启前终端设置被修改而没有恢复,导致重启后终端设置处于规范模式(默认是规范模式)。因此,在程序内部主动设置非规范模式是更可靠的做法。 所以,根本原因是程序没有正确设置终端模式,导致输入字符被终端回显一次,又被服务器返回并输出一次。 </think>### 客户端重复输出stdin字符的原因分析 #### 核心问题:终端模式未正确重置 在关机重启后出现重复输入字符的根本原因是**终端属性未在程序退出时完全恢复**。具体机制如下: 1. **终端模式改变未恢复**: - 程序中通过`tcsetattr`设置的**非规范模式**(ICANON关闭)和**回显禁用**(ECHO关闭)未在退出时恢复 - 重启后终端保持非规范模式,导致输入字符被程序逻辑和终端双重处理 2. **关键证据定位**: ```c // 在cli__fakeConsoleStart()中(未在代码片段显示) tcgetattr(STDIN_FILENO, &orig_termios); // 保存原始属性 new_termios = orig_termios; new_termios.c_lflag &= ~(ICANON | ECHO); // 禁用规范模式和回显 tcsetattr(STDIN_FILENO, TCSANOW, &new_termios); // 应用设置 ``` **问题**:在`fcwli_epollRW()`退出路径`done:`中未恢复原始属性 3. **双重处理流程**: ```mermaid graph LR A[用户输入'a'] --> B[终端非规范模式] B --> C{程序处理} C -->|read返回| D[发送到服务端] D --> E[服务端回传] E --> F[客户端输出] B -->|终端自身处理| G[重复输出] ``` #### 修复方案 在退出路径恢复终端原始属性: ```c done: // 新增终端属性恢复代码 #include <termios.h> static struct termios orig_termios; // 需在全局保存原始属性 if (isatty(STDIN_FILENO)) { tcsetattr(STDIN_FILENO, TCSANOW, &orig_termios); // 恢复原始终端设置 } DBG_ALZ("epoll loop end"); ... // 原有关闭操作 ``` #### 其他潜在问题 1. **信号处理缺失**: - 未处理SIGTERM/SIGINT,异常退出时终端属性未恢复 - 解决方案:注册信号处理器调用`tcsetattr` 2. **多线程同步风险**: - `mtx_fakeConsole`锁在退出时未考虑嵌套调用 - 建议:在`cli__stopUseFakeConsole()`内添加锁状态检查 3. **资源泄漏防御**: ```c // 在done标签前添加预防性清理 if (epoll_fd >= 0) { epoll_ctl(epoll_fd, EPOLL_CTL_DEL, STDIN_FILENO, NULL); epoll_ctl(epoll_fd, EPOLL_CTL_DEL, slave_sock, NULL); } ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值