0-1背包问题,poj 3624 Charm Bracelet动态规划-解题报告,增加最优路径构建

本文介绍了0-1背包问题的解决方法,强调了动态规划的应用,并通过一个具体的示例来展示如何找到最大价值组合。文章还包含了实现该算法的C语言代码。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >


1)0-1背包问题和 零碎背包问题是不同的,前者只能用动态规划来做, 后者可以用贪心算法。

2)动态规划的核心是 “有多个重叠子问题”,“自底向上”解决问题。

3) 0-1背包问题 ,W为最大重量,n为物体个数,求最大的价值Value,可在O(nW)的时间复杂度内解算出来。

Language:Default

Charm Bracelet

Time Limit: 1000MS
Memory Limit: 65536K

Total Submissions: 10014
Accepted: 4498

Description

Bessie has gone to the mall's jewelry store and spies a charm bracelet. Of course, she'd like to fill it with the best charms possible from theN (1 ≤ N ≤ 3,402) available charms. Each charm i in the supplied list has a weightWi (1 ≤ Wi ≤ 400), a 'desirability' factorDi (1 ≤ Di ≤ 100), and can be used at most once. Bessie can only support a charm bracelet whose weight is no more thanM (1 ≤ M ≤ 12,880).

Given that weight limit as a constraint and a list of the charms with their weights and desirability rating, deduce the maximum possible sum of ratings.

Input

* Line 1: Two space-separated integers: N and M
* Lines 2..N+1: Line i+1 describes charm i with two space-separated integers:Wi and Di

Output

* Line 1: A single integer that is the greatest sum of charm desirabilities that can be achieved given the weight constraints

Sample Input

4 6
1 4
2 6
3 12
2 7

Sample Output

23

Source

USACO 2007 December Silver

#include <stdio.h> int N,M; int W[3410],D[3410]; int f[12882]; int rout[12882]; //寻根,帮助重建 int main() { scanf("%d%d",&N,&M); for(int i=1;i<=N;i++) { scanf("%d%d",&W[i],&D[i]); } for(int i=1;i<=M;i++) { f[i]=0; rout[i]=-1; } for(int i=1;i<=N;i++) //注意不是从W[i]到M,而是从M到W[i],因为这次是基于上次的基础(后者),而不是重复算两次当下(前者) for(int j=M;j>=W[i];j--) { if(f[j-W[i]] +D[i]>f[j]) { f[j]=f[j-W[i]]+D[i]; rout[j]=W[i]; } } int ma=-1; int pos=-1; for(int i=1;i<=M;i++) if(f[i]>ma) { ma=f[i]; pos=i; } printf("%d\n",ma); int j=pos; while(rout[j]!=-1 && j>0) { printf("%d\n",rout[j]); j=j-rout[j]; } scanf("%d",&N); return 0; }
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值